DOI QR코드

DOI QR Code

Surface and Interfacial Energetic Analysis of Amphiphilic Copolymers

  • Kim, Min-Kyun (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Yuk, Soon-Hong (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Jhon, Mu-Shik (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1987.06.20

Abstract

A Series of hydrophilic-hydrophobic copolymeric surfaces of 2-hydroxyethyl methacrylate (HEMA) and various alkyl methacrylate (RMA) have been prepared by in-situ solution copolymerization using a redox radical initiator. Contact angles of various probing fluids on the polymeric surfaces were determined in air (hydrophobic environment) and under water (hydrophilic environment). From contact angle data, the dispersive interaction contribution (${\gamma}^d_s$) and the polar contribution (${\gamma}^p_s$) to the total surface free energy (${\gamma}^d_s$) and interfacial energetic quantities (e.g., water-polymer, liquid-polymer interface, etc.) were estimated by surface and interface physicochemical theory. From the comparison of surface energetic components between hydrophobic and hydrophilic media, it is found that surface and interface energetic components of polymeric surface as a representative low-energy surface are highly dependent on environmental fluids. Also, from the correlation between interfacial energetic results and surface energetic criterion of biocompatibility, we found that HEMA/BMA, HEMA/HMA copolymer systems are in the region of biocompatibility.

Keywords

References

  1. Physical Chemistry of Surfaces A. W. Adamson
  2. Physical Chemistry of Adhesion D. H. Kaelble
  3. Surface and Interfacial Aspects of Biomedical Polymers J. D. Andrade(ed.)
  4. Adv. Chem. Ser. Contact Angle, Wettability, and Adhesion F. W. Fowkes(ed.)
  5. Am. Chem. Soc. Symp. Ser. Hydrogels for Medical and Related Applications J. D. Andrade(ed.)
  6. J. Polym. Sci. Polym. Symp. Ed. v.66 S. D. Bruck
  7. J. Colloid Interface Sci. v.59 B. W. Davis
  8. J. Colloid Interface Sci. v.59 J. Schultz;K. Tsutsumi;J. B. Donnet
  9. J. Colloid Interface Sci. v.112 D. R. Adsolom;W. Zingg;A. W. Neumann
  10. J. Phys. Chem. v.64 R. J. Good;L. A. Girifalco
  11. J. Adhesion v.5 S. Wu
  12. J. Colloid Interface Sci. v.59 R. J. Good
  13. J. Polym. Sci. v.A-29 D. H. Kaelble;E. H. Cirlin
  14. J. Polym. Sci. Polym. Symp. v.66 J. D. Andrade;R. N. King;D. E. Gregonis;D. L. Coleman
  15. J. Colloid Interface Sci. v.110 S. H. Yuk;M. S. Jhon
  16. J. Colloid Interface Sci. v.116 S. H. Yuk;M. S. Jhon
  17. J. Adhesion Sci. and Technology S. H. Yuk;M. K. Kim;M. S. Jhon
  18. Eur. Polym. J. v.15 M. S. Choudhary;I. K. Varma
  19. Bull. Korean Chem. Soc. v.6 W. G. Kim;M. S. Jhon
  20. J. Colloid Interface Sci. v.102 B. Janczuk;E. Chibowski;T. Bialopiotrowicz
  21. J. Colloid Interface Sci. v.44 J. Panzer
  22. J. Appl. Polym. Sci. v.22 B. D. Ratner;P. K. Weathersby;A. S. Hoffman;M. A. Kelly;L. H. Scharpen
  23. Progr. Colloid & Polymer Sci. v.70 G. A. Somorijai;B. E. Bent
  24. J. Biomed. Mater. Res. v.9 F. J. Holly;M. F. Refojo
  25. J. Colloid Interface Sci. v.101 E. Ruckenstein;S. V. Gourisankar

Cited by

  1. Normal mode calculation and IR band assignments of A-type zeolite vol.75, pp.4, 1987, https://doi.org/10.1007/bf00533196
  2. Synthesis and Surface Structure of Polyester-block-Poly(dimethylsiloxane)-block-Polyester Copolymers vol.11, pp.2, 1987, https://doi.org/10.1007/bf03218342