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Substitution of eq. (1-2) into eq. (1-3) yields eq. (6).

Appendix 2

From Scheme II,

d 円=0 TJQOH〕-L〔Q+〕〔0H-〕-4k〔BH；〕〔Q+〕 
dt

(2-1)

In k =a+6 (In K) +c (In K) 허 (3-5)

Coefficients a, b, and c in eq. (3-5) can be obtained from eq. 

(3-4).

Differentiation of In k, from eq. (3-5) and coefficients a, b, 

and c by In K gives eq. (11), where

d A 

d In K
= -27?T(r-l)

Ef 狀으쁞® (2-2)
References
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、쓰브〔BHQ 
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(2-3)

Substitution of eq. (2-2) into eq. (2-3) yields eq. (8).

Appendix 3

如*=旷+ （1+으으土으） *스
A 4

(3-1)

where C = W* - Wr

kT
AG* = RT (In 三丄〜In k) 

n.
(3-2)

and 厶G° = — RT In K (3-3)

With substitution of eqs. (3-2) and (3-3) into eq. (3-1) AG* 

is converted to In k.

m—— 品("+스+응+A+lnf

(3-4)
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Study of Diffusion-Controlled Processes. Potential Shape Dependence 
in One-dimension
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The Smoluchowski equations with a linear and a parabolic potentials in one-dimensional case are solved for the reflecting 

boundary condition. Analytic expressions for the long-time behaviors of the remaining probabilities are obtained. These results, 

together with the previous result for a step potential, show the dependence of the desorption process on the form of potential. 

The effect of the radiation boundary condition is also investigated for three types of potentials.

Introduction

The study of diffusion-controlled processes is very impor­

tant to understand the various chemical phenomena occurr­

ing in solution1-2 3. The dynamics of these processes is usually 

described by the Smoluchowski equation in the presence of 

an external force field4.

The kind of process treated here is the desorption process 

which is important in the study of surface catalysis5-6 and the 

investigation of charge transfer at interfaces7. We are primari­

ly interested in the solution of the Smoluchowski 은quation with 

a model potential. In the previous work8, we solved the
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Smoluchowski equation for a step potential in one-dimensional 

case and three-dimensional case with spherical symmetry.

The purpose of this work is to extend our rusults to poten­

tials of other shapes. The types of potentials to be considered 

here are linear and parabolic potentials. With these potentials, 

solving the Smoluchowski equation subject to relevant boun­

dary condition is rather difficult even in one-dimension. Yet 

we can obtain the remaining probabilities, especially the long 

time behaviors of them.

This paper is organized as follows. First, we present a 

general procedure for solving the Smoluchowski equation and 

obtaining the remaining probability in one-dimensional case. 

This method is applied to the linear and parabolic potentials, 

respectively, and the resulting long time behaviors of remain­

ing probabilities are obtained in simple expressions. As a con­

clusion, the results for three potentials (in이uding the step 

potential) are compared. The effect of the boundary condi­

tion is also investigated.

Theory

In one-dimensional case, the probability distribution func­

tion f(x, t) is governed by the well-known Smoluchowski equa­

tion given by

W(x)

Figure 1. Interaction potentials, a: step potential, b: linear potential, 

c: parabolic potential.

df/dt=D[d2f/ax2-hfid (f dw/dx)/dx} (1)

where D is the diffusion coefficient, 0 is the Boltzmann fac­

tor and W is the interaction potential. If w은 introduce the 

following variable transformations

(i) Linear Potential

「- (Q/x0) (x0-x), 0 <X<XQ 
w =

L 0 , x>x0
⑻

r =fiDt

g =

U =£W

(2)
(ii) Parabolic Potential

r 一 (QAo) (x-x0)2, 0 <x<xQ 
W =

0 , x>x0
(9)

and a reduced distribution function Q(y, t) defined by

P 三f exp(U/2), ‘ (3)

then Eq.(l) is reduced to

dp/dr-p^ -〔(V/4 — /2〕夕 ⑷

The shapes of these potentials are depicted in Figure 1.

Due to the shape of the potential, Eq.(5) is solved separately 

in two regions and the solutions are connected by the mat­

ching conditions at the boundary. In two regions, E아.(5) 

becomes

房"一〔(U')'/4-U" /2+z〕； = -10S(y) exp ([/(0)/2),

where primes denote differentiations with respect to y. Tak­

ing the Laplace transformation gives 0<J/ <t/0 (10a)

一〔(/) 후/4 —U" /2}p=zp~ p (0) ⑸ 0/ -沽=0, y>y0 (10b)

where
The continuity requirements for the probability distribution 

function and for the flux become

⑹
Pi 0、z)exp〔S (go)/2〕=万2 0, z) exp(Ua (饥)/2〕 (11)

It is assumed that the surfactant molecules are located at the 

surface (x = 0) initially. That is
\pxf (go,z) +〔UJ 0)/2〕鬲 S),z)} exp〔-U] (g))/2〕

={房'G/lQ + W(队))/20 (如 z)} exp(-t/2(1/J/2] (12)

or

fix, t=0) = g (7a)

where

p (g, T =0)=10 S 侦)exp(J7/2) (7b)

Here we consider the two types of interaction potentials:

Ul (y0) = lim U (y) 
2

I •& -o外+0
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Ui (기」) = lim Uf (y)

2 y» -0
>0 +0

And the reflecting boundary condition is given .by

房，(0,z)+〔U‘(0)/20 (o,z) = -V7 exp [1/(0)/2j (13)

The solution of E다.(10) can be written as

01(!/, z) =4F\ 3, z) +BF2 (y, z) (14a)

Pi (g, z) =CGi (y, z) (14b)

where A, B and C are constants which can be determined by 

the three conditions of Eqs.(ll)，이 13) and Flt F2, and G】 are 

bounded homogeneous solutions of Eq.(10).

The remaining probability is defined near the surface 

region as

P(、t) =『f、(") dz (15a)

or in terms of the transformed variables

P(T、)三 BfL 血 (15b)

The long time behavior of P(t) can be investigated using the 

Laplace transformed remaining probability P(z) which is given 

by

万(z) = (r)e-"dr (16)

where the flux J(y,z) is

z)= -〔万'+ U/2)万〕exp(-J7/2) (17)

A. Linear Potential

For the potential of the form given by Eq.(8), the 

Smoluchowski. equation is reduced to

爲" 一〔(Q/2go)'+z〕爲= 一 V耳 廿 (히) exp(-Q/2), (18a)

扇"-zp2= o , y>y0 (18b)

w辻h the reflecting boundary condition

Pi (0,z)+ (Q/2y°) px (0,z) = -V~a exp(-Q/2) (19a)

and two matching conditions

Pi ®q,z)=勇(g°,z) (19b)

p/ ("z)+ (Q/2g°)妩(火,z)=0/ S,z) (19c)

The solutions of Eq.(18) satisfying Eqs.(19a)~(19c) are

Pi(V次)=V百 exp(-Q/2)〈3+Vz~+Q/2go) exp[- tj (g-y。)〕 

+ (?? - Vz"~Q/2tfo) exp〔〃(§ls)〕}/D (z) 

(0VY“) (2°Q 

Pt 3,z)=VE" exp(-Q/2) (2 7?) exp ( - 7? (y-g g)〕/D (z)

(y>y0) (20b)

where

D (z)= {t) -Q/2y0) 3+V：+Q/2g0)exp (??!/•)

- 3+Q/2go)(히 -\T-Q/2y0) exp(- 7)ya) (21a)

7?三〔(Q/2饥尸+z〕5 (21b)

The remaining probability P(z) is obtained as

P(z)=z_|[1-2?7Vz exp (~Q/2)/D (z) ] (22)

In the long time limit of z being very small, the denominator 

D(z) can be approximated to be

D (z) =시"; [exp (Q/2) - exp (-Q/2)〕+ (Q/g。) exp (-Q/2) \

(23)

Then P(z) can be simplified as

F(z)=k"{1&+(Q/m)〔exp(Q)-lLL (24)

which can be inverted analytically to give

P(T)=exp{r/(y°/Q) '〔exp(Q) - l]1}

x Erfc <Vr/(y0/Q)〔exp(Q) - 1〕} (25a)

----- > W/Q)〔exp(Q) T〕(s)허 (25b)

where Erfc (x) is the complementary error function.

B. Parabolic Potential

For the parabolic potential of the form given by Eq.(9) the 

Smoluchowski equation becomes, in the two regions,

-〔3,(§-火)*/4+w/2+z〕勇

—— 迎 g exp(-Q/2), 0<y<y. (26a)

p2f/ -zp2 = 01 y>y0 (26b)

with the three conditions given by

(0,2)+ (Q/y^Pi (0, 2) = -exp (-Q/2) (27a)

Pi S,z)=勇 S,z) (27b)

3/ 3异)=方了 (軌i,z) (27c)

where cu 三 2Q/g：. 

The solutions of Eq.(26) are

S, z) = VB exp( —Q/2) < —(z) U(«/ai +1/2, VZ7 Sr)〕 

+D2(z) V^/oj+1/2, VW

(0<j/ <i/o) (28a)
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Table 1. Remaining Probabilities for Different Potentials

P(t) P(t) as t-*°°

Free Diffusion Erf ®2/t)*

Step Potential exp[T/y/e2Q]Erfc(v广T/yoeQ)

Linear Potential exp[r/(y„/Q)2 (eQ-l)2]

x Erf"/(yJQ)(eQ-l)]

编西-1)(旳广”/Q

Parabolic Potential exph/(yJ2Q)2(l + l/2Q)2e2e]

x Erfc[/H(yJ2Q)(l + l/2Q)eQ]

yo(l + l/2Q)eQ(nT)-1/2/2Q

This is an exact expression. All others are long time approximations.

Pl g, z)=Vfi exp (~Q/2)D3 (z) exp (- V7g)/Z) (z) 

(y>ya) (28b)

where U and V are the parabolic cylinder functions9 and

玖0)=시切 3/a+1/2, + 1/2,0) (29a)

(心 + 1/2,0)-板卩"+1/2,0) (29b)

D3 (z)=〔卩(z/s+1/2, 0)D2 3) - U (z/w +1/2, 0)

"](z)〕expCVMo) (29c)

D (z) =시~血 (山 - 1/2, V2Q)Dv (z) + (z/VM )，" - 1/2,

V灵 3) (29d)

The remaining probability P(z) is obtained as

P (z) =z~' <l-exp(-Q/2)Vz 03 3) exp (- V7t/0)/^ 3)} (30)

In the long time limit of z being very small, the above expres­

sion for P(z) can be approximated as (see Appendix)

P(z)如/2Q) (1+1/2Q) exp(Q)厂”〔1+S/2Q)(1 + 1/2'Q)

x exp (Q) VT] (31)

which can be inverted analytically to give

P (r) -exp k/(J(o/2Q)2(1 + 1/2Q) 2exp(2Q)}

x Erfc〔V£7 Wq/2Q) (1 + 1/2Q) exp (Q)〕 (32a)

一W2Q) (1 + 1/2Q) exp (Q) M)* (32b)

Conclusion and Discussion

In this work we have examined the one-dimensional 

Smoluchowski equation with linear and parabolic model poten­

tials and have obtained the long time behaviors of the remain­

ing probabilities. Previously8, we obtained the results for a 

step potential. The resulting expressions of the long time 

behaviors of the remaining probabilities are summarized in 

Table I. The magnitudes of P(t) at the same t for the three 

potentials are in the order of step > linear > parabolic. This 

feature is shown in Figure 2. This result can be anticipated 

by examining the gradient of potential (i.e. force), particular­

ly near the boundary x = x« (or y = yo). As the potential depth(Q) 

and width(yo) become larger, the remaining probability 

becomes larger as it must be.

Figure 2. Remaining probabilities (long-time behaviors). 一•一 step 

potential,--- linear potential,----parabolic potential,----- free

diffusion.

For all three potentials, as L8 the remaining probabilities 

obey the F’”behavior and we can reduce the three cases into 

an identical form as

P (r) =exp(Tsc)Erfc〈시LM) (33a)

—r-8 A (兀腿)一5 (33b)

where the scaled times are

z r /y0 2 exp(2Q) (step potential) (34a)
SC —

r/ (t/o/Q)2 [exp (Q) - 1]2 (linear potential) (34b)

r/(go/2Q)'(l + l/2Q)%xp(2Q)

七 (parabolic potential) (34c)

From this fact we can conclude that for different potentials 

or different sets of parameters (Q, yo), the long time behaviors 

of the remaining probabilities show similar behaviors. But the 

time scales of the desorption processes become different ac­

cording to the variations in the shapes of the potentials or their 

parameters.

The boundary condition adopted here is the reflecting boun­

dary condition which is a limiting case of the radiation boun­

dary condition10. Solving the Smoluchowski equation for a step
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Figure 3. Effect of the radiation boundary condition for the step 

potential, h is the intrinsic rate constant appeared in the radiation boun­

dary condition.

Figure 4. Remaining probabilities with the radiation boundary con­

dition. —step potential,--- linear potential,---- parabolic

potential.

potential with the radiation boundary condition was treated 

in the previous work8. The resulting long time behavior of P(t) 

(Eq.(49) of the previous paper8) is depicted in Figure 3 with 

the variation of the intrinsic rate constant h.

Since the radiation boundary condition implies that the 

desorbed particles are partially re-absorbed into the boundary, 

the remaining probability becomes larger than that of the 

reflecting boundary condition case.

For the linear and parabolic potentials analytic expressions 

of the remaining probabilities with the radiation boundary con­

dition cannot be easily obtained. Yet we can solve the 

Smoluchowski equation with these potentials numerically by 

standard finite difference technique11. The remaining pro­

babilities with the radiation boundary condition for the three 

potentials are compared in Figure 4. The effect of the radia­

tion boundary condition is more pronounced when we make 

the potential depth(Q) larger. But the increase of the poten­

tial width (y。)does not enhance the effect of the radiation boun­

dary condition appreciably. We may think that the effect of 

the partially absorbing process is related to the force toward 

the origin (i.e. potential gradient near 난此 boundary x=0). 

Acknowledgement. This work was supported by a grant from 

the Korea Science and Engineering Foundation.

Appendix

To obtain the long time behavior of P(z) for the parabolic 

potential, we use the following expressions of the parabolic 

cylinder functions9.

U(a,p)~exp(-p74)p-°-1/2 {1 一(a+l/2)(a+3/2)/2p호} (Ala)

V (a,p) ~exp(-p74)po-1/J {1- (a - 1/2) (a -3/2)/2paJ

(for \a I <p) (Alb)

Then in the limit of z f 0

U" -1/2, V熨)=exp(-Q/2) (A2a)

V (z/Z - 1/2, V2Q) exp (Q/2) • (1 + 1/2Q)/V2Q

(A2b)

and

U"+l/2,0)=VM万 (A3a)

V(2/^+1/2,0) =V277 (A3b)

U' "+l/2,0)：=-l (A3c)

(z/a> +1/2, 0) = 0 (A3d)

In this limit, D/s and D can be approximated as

■S(2)~ - V2/n Vz (A4a)

P2 ~ - CVLJ +V心/2〕 (A4b)

^3― - V2o>/^ exp (VTy0) (A4c)

D(z) = -V2Z/7^〔exp(-Q/2)+S/2Q) (1+1/2Q)

x exp (Q/2) V7] (A4d)

Therefore, P(z) is approximated to give

P (z) N " {1 - ^2za)/n exp ( —Q/2) /V2a%〔exp ( - Q/2)

+ 知/2Q) (1+1/2Q) exp(Q/2) “〕} =知/2Q)(1 + 1/2Q)

x exp(이〔]+ S)/2Q) (1 + 1/2Q) exp(Q)V3L (A5)
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The effects of initial vibrational energy on VV energy transfer in the collinear collision of two diatomic molecules, either 

homonuclear or heteronuclear, has been studied over a range of collision energies in classical mechanics. When initial vibra­

tional energy is very large, only a small fraction of vibrational energy in the excited molecule is transferred to the colliding 

partner. In this case, the VV step is found to be strongly coupled with VT during the collision. At low collision energies, 

energy transfer in the homonuclear case of O2 + with small initial vibrational energy is found to be very inefficient. In 

the heteronuclear case of CH + HC with the initial energy equivalent to one vibrational quantum, VV energy exchange is 

found to be very efficient at such energies. Between 0.3 and 0.5 ev, nearly all of vibrational energy of the excited molecule 

with one to about three vibrational quanta in CH + HC is efficiently transferred to the colliding partner through pure VV 

process in a sequence of down steps during the collision. The occurrence of multiple impacts during the collision of two 

heteronuclear molecules and the collisional bond dissociation of homonuclear molecules are also discussed.

Introduction

Both approximate and exact calculations of collisional 

energy transfer in classical mechanics have been made in large 

numbers over the last two decades and the results are well 

documented in a number of standard references113. Most of 

such calculations are based on the collision of two harmonic 

oscillators with no initial vibrational energy. Carrying out ex­

act calculations numerically for anharmonic oscillators is no 

more difficult than that of the harmonic case, and in such more 

realistic calculations the binding potential of the oscillators 

is usually assumed by the Morse function114.

Relatively little has been done, however, in the way of 

classical calculations involving anharmonic oscillators with in­

itial vibrational energy. In such a case there is an important 

feature of vibration-to-vibration (VV) energy transfer, and 

information on the efficiency of W energy exchange and the 

extent of W contribution to overall energy transfer processes 

are valuable in studying, among others, chemical reaction 

dynamics and the performance of chemical lasers111215,6. Of 

particular interest in such studies is energy transfer to or from 

excited molecules with regard to the influence of initial vibra­

tional excitation on the accumulation of internal energy and 

subsequent bond dissociation. The classical equations of mo­

tion for systems of this type can be solved numerically with 

a digital computer. Typical calculations describe the time 

evolution of dynamical variables such as trajectory and inter­

nal coordinates. Energy transfer between vibrational motions 

or between translational and vibrational motions can be ex­

tracted from these calculations. The present work is concerned 

with such calculations carried out in order to study vibrational 

energy exchange between two Morse oscillators interacting 

collinearly-one with initial vibrational energy and the other 

with no energy. The specific systems considered are the col­

lisions of O2 + O2 and CH + HC representing homonuclear and 

heteronuclear molecules, respectively, in the collision energy 

range of 0-2 ev. Particular emphasis will be given to the ef­

fects of varying initial vibrational energy in CH + HC.

In the CH + HC collision system, two light hydrogen atoms 

are located between two heavy carbon atoms. When a colli­

sion occurs the two hydrogen atoms oscillate back and fortht 

thus causing multiple impacts and making the collision 

dynamics very interesting. This system also closely resembles 

the interaction of the hydrocarbon chain and mimics the quen­

ching of the vibrationally excited molecules by hydrocarbons.

Collision Model

In the collision, one of the molecules (say molecule 1) with 

initial vibrational energy Ev ] collides with molecule 2, which 

has no initial vibrational energy. The binding potential of each 

molecule is assumed by the Morse function

Vm,((们)=1為 I ~ 1)2； i = 1 or 2, ⑴

where D, is the veil depth of 나le Morse potential and b is an


