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Abstract

In this paper, we have defined the Weighted Hadamard Transform (WHT) and developed
efficient algorithms for the fast computation of the WHT. The WHT is applied to digital image

processing and compared with Hadamard Transform (HT).

We have weighted at the center

spatial frequency domains of the Hadamard Transform and transmitted a image and then center
high frequencies are neglected at the receiving.
The WHT of signal to noise ratio (SNR) and image quality are enhanced than the HT,

I. Introduction

The application of discrete orthogonal trans-
forms for image representation and compres-
sion is well-known [1], [2]. A much-investi-
gated method, due to the ease and efficiency of
its implementatior is based on the Hadamard
transform (HT).

In this paper, we present a modification to
the HT, which we call the Weighted Hadamard
transform (WHT). This method retains much
of the simplicity of HT, but offers better
quality of representation over the central region
of the image [3]. The scheme was motivated
by two factors. First, the main features of
many images are placed in the center of the
field of view of the TV camera. Second, it is
known that the human visual system (HVS) is
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most sensitive to the mid spatial frequencies
[3].16],[12],[13],[14]. The WHT emphasizes
the spatial and frequency domain features in
these regions.

The paper is organized as follows. First, in
the next section the WHT is introduced and
recursive relations for the generation of the
transform matrix is presented. The fast WHT
algorithm sitmilar to a fast HT method is derived
for both the forward and inverse transforms.
Second, examples are presented that compare
the effects of the quantization errors on the
representation of images by the HT and the
WHT as well as the quality of data compression
by neglecting high-frequency Hadamard and
Weighted Hadamard coefficients. The data
compression examples are merely presented to
compare the HT and the WHT techniques.
Third, we have made a hardware realization of
the WHT that has used some shift register and
digital adder on the weighted mid-spatial
domain.
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II. The Weighted Hadamard Transform

Let the Hadamard and Weighted Hadamard
matrics of order N=21 be denoted by [H] N and
[WH} N respectively. The WHT of an Nx1
vector [f] and an NxN (image) matrix [g] are
given as in the case of the HT by

[F] = [WH] \If] and

[f] = [WH] " [F] (1)
[G] = [WH]N[g] [WH]N and

(g] = (WHI ' [GIIWH] 2

The lowest-order WH matrix is of order four
and is defined together with its inverse by

‘1 1 1 1
-2 2 -1
w2l (3)
1 2 -2 =1
1 1 —1 1
2 2 2 2
Lo1l2 -1 1 —2
WH]; = 4 (4
[WHI= g 2 1 —1 —2 )
2 —2 —2 2

This choise weighting was dictated, to a
large extent, by the requirements of hardware
simplicity and error performance results.

As with the Hadamard matrix, a recursive
relation governs the generation of higher order
WH matrices. Thus

&)
(6)

{WH] 8~ [WH]4(>§[H] 2
[WH] y& [WH] 5 0[H] 4

where 00 is the kronecker product.
[H] ) is the lowest-order Hadamard matri-

ces. [11.[5].

[1 1
1 -

The kernel of [WH] is followed by HT as
shown

(H]
2

(7)

+ + + +

(302)
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+ - 4+ - 4+ - + -
+ + - - + 4+ = -
+ - — 4+ + - - +
(H],= (9)
+ + + 4+ - - - =
+ - + - - 4+ — +
+ 4+ - - - - + +
+ - - 4+ - 4+ + -
We have weighted at the center frequency
domain of the Hadamard transform. It empha-
sizes frequency domain features in these

regions. Some initial results of this paper
were presented at the [3], [11], [14].

III. Fast Weighted Hadamard Transform
(FWHT) Algorithm

A fast Hadamard transform (FHT) algorithm
was outlined in 1937 by Yates. In 1958 and
1969, Good and Pratt et al describes matrices
decomposition techniques which can be imple-
mented to perform the HT with the NlogzN
operation. [1],[2],[4]1,[9].

We now present a fast algorithm for the
WHT which is intimately related to the fast
HT(FHT) algorithm [2],[4]. The FHT can be
derived by decomposing [H]N into a product
of n sparse matrices, each having rows with
only two non-zero elements. In order to de-
velop a similar algorithm for the WHT, define
a coefficient matrix [WC] N by

[WC]y = [HI[WH] . (10)

Since [H]N'1 =§ [H]N, we have from (10) that

[WHIy = L (HI[WCy,. (1)

It is shown that [WC]N is a sparse matrix with
at most two non-zero elements per row and
column. Therefore, the FWHT is simply the
FHT followed by a sparse operatorl [WC]N.
To show the sparseness of [WC]N we start
by computing the lowest order [WC], ie.
{WCl,.
From (10), we have
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1 1-1-1{{1 2-2-1] {0—-2 60
1-1-1 1l1—-1-1 1) {0 0 04
(12)

Clearly [WC]4 is sparse. Using the expansion
properties of the Hadamard and Weighted
Hadamard matrices, (10) can be written as

[\NC 1.\1: ([ H }N/Z ‘/.Xj"‘lsz) ([WHJN/Z‘X [sz)
= (|H]x.ol WH]y,2) 00 (HI|H.]) =

=[WCly.x (21),), 13)

where [1], is the 2x2 identity matrix. Since
[WC]4 is symmetric and has at most two non-
zero elements in each row, it clearly follows
from (13) that the same is true for [WC]g
and hence for any [WC]N, N=2%, k=234, ..

a. Forward Fast Weighted Hadamard
Transform

The WH matrix decomposition is of the
form of the Kronecker products of [H],
matrices and successively lower order WH
matrices.

The forward fast Weighted Hadamard
transform (FFWHT) is given formulas as shown

l“’H]s:“‘”;{WHJs:é LHLOSHEIHTWCL< 2 1]

[(HLIWCL ] 2HE 1)

c (HLIWCLIx2[H],) (14)

1
8
1
8
Where [WH]N represents the matrices of order
N, The recursive relationship is given by the
expression

|WHI= & (Hl A WCly ) 69 2(H,) (15)
This decomposition leads very clearly to a
sparse matrix factorization of the WH matrix,

b. Reverse Fast Weighted Hadamard Transform
The reverse FWHT may be formulated in a

similar fashion as the FWHT. First we note
that

(303)
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(WCIo' =Wk, 00 § (1l, (16)

Equation (16) can be shown to be true by
multiplying [WC]N'l in (16) by the expression
for [WC]N given in (13). From (16) and the
sparseness and symmetry of [WC]N‘1 it follows
that [WC]N'l is also symmetric and sparse.
Furthermore, using (15), we have
..1 - -
(WHIN' =N[wCly' [H]N! an
1
But [WC]y and [Hly! =3 [H]y are both
symmetric with a symmetric product. Thus,

[WHI'=HIdWCT,

= (WA WC R 0 3 1) (1%)

Equation (18), with the exception of the
scale factor —— , is of the same form as (15).
Consequently, it signifies a fast algorithm for
the inverse of [WH]N composed of FHT fol-
lowed by the operation of the sparse matrix
x [WCIy.

We know that the [WC] is always symmetric
matrix. i.e.

[WCly (WCIy™! = [y (19)

The proof of (19) is very simple. Using the
algebra of Kronecker products [2], we have

[WCIWWCIR" = (WCly 2002 1]) A WCI o /21,
T (IWCIN?! WC }hlz) X (l I }2“]2) =
=[1l (20)
The proof is complete.

The WHT,, makes a decomposition of sparse
matrices as below: [4]

T+ 4 ] [+ O+ O+ 400
-4 | |ot o]t oo
T |+ 0o - oflloo+ +
| }- o4+ 0 —-|lo o4 -
@n
X,(0) 1 0 1 0] | Xi01] [ X0
x| o 1 o 1| |xm] %0
X2 [1 0 —1 0 XJ‘Z' Xa(2)
%@ o 1 0 — 1) x| x@
11 00X
o1 0 o %W
0 0 1 1]|X@
0 0 1 -1]lxel
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X.(0) 4 0 0 0 Xs(O)] Table 1. Comparison of computing numbers
Xl |0 6 —2 0 X, (1) of FHT and FWHT.

X (2) 0 —2 6 of|x@| @
X4(3) 0 0 0 4 X:(S) form HT fast HT WHT fast WHT
NxN Add Add Add Mult, Add Mult.
The signal flow graphs for WHT,4 based on (21), dx4| 1 8 12 4 10 6
(22) are shown in Fig. 1. ax8l 5 2% 5% % % 1
The FFWHT, signal flow graph illustrated in 6161 240 64 2%0 2 7 9%
Fig. 2. N
- . _ rn-t s n-?
There is a comparison of computing numbers EQ. | N(N-D Nxa ININ-D | 2 Z(Z"H) bx2
between the FHT and FWHT in table 1.
#1 #2 #3 #4
X, (0) X, (0} X, (0} 4 X, (0) 1/4 X (0)
X (1) X, (1) X X, (1) 6 X, 1) X, (1)
XZ
X.(2) X, (2) X;1(2) 5 X, (2) X (2}
X.(3) X, (3) X X, (3) 4 X, 13) X, (3)
(a) FFWHT
#1 #2 #3
X, (0) X, (0) X3 (0) 0.25 X (0)
X, (1) X, (1) — X, (1) Xo(1)
0. 0625
X, (2) X, (2) X, (2) X, (2)
0.25 [
X3 X:(3) — X, 3} X, 3)
(b) REWHT
Fig. 1. Fast weighted Hadamard transform signal flow graph, N=4 Iteration number
(#)=log, N+1.
2 3 #4 1/8
X0 # X0 < X, (0) L8 X0 X, 10)
1/8
X, (1) X (1) >_< X 1) 8 xa - X, (1)
1/8
X, (2) X, (2) X, (2) 12 x@ X, (2)
= -4
1/8
X 3) _ X (3) >_< X, (3) 12 X, / X 3)
—4 1/8
X, 4) X, (4) X, (4) 1N X, (4) / X, (4)
- 1/8
X, (5) X, 5) >_< X,(5) ! x5 — X, (5)
. 1/8
X, (6) X, (6) X, (6) X, (6) X, (6)
1/8
X7 - X, (7) >_< X 8 X X
Fig. 2. FFWHT signal flow graph, N=8,

(304)
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The FWHT algorithm is shown as below in Fig.
3.
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Fig. 3. FWHT flow chart.

IV. Image Processing

The WHT of image processing is shown in
Fig. 4.
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Fig. 4. WHT image processing

The original image, shown in Picture 1, is a
64x64 pixel and 8-bit uniformly quantized
representation of a girls face. This image is
used as the input to the transform algorithm.

First of all, the human visual response to
spatial frequencies is nonuniform and the
mid-spatial frequencies are emphasized more
than the low and high spatial frequencies.
fel,[10].

The use of particular properties of the HVS
in image coding is referred to as psychovisual
coding. [15].

We have weighted in the center spatial fre-
quency domains and transmitted a image and
then adopted center block truncation coding
(CBTC). This transform conserve the signal
energy in the transform domain, but typically
most of this energy is concentrated in relatively
few samples which area usually the lower
frequency samples.

Several years ago, block truncation coding

(305)
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(BTC) was developed by Delp and Mitchell.
[7].

In this paper, we will present a modified
BTC scheme which is called CBTC.

The schemc is simple: first, the two-dimen-
sional transform image divides into two blocks.
One is an edge boundary pixel (4x4) that is
retained without coding, and the other is a
large center block, a subpicture 8x8 block,
where the 8x8 blocks are coded individually.

Second, each subpicture 8x8 block has a
two level signal representation.

Let X{,X3, .., Xm be the value of the
transformed image.

Then by Delp [7], the first and second
sample moments and the sample variance have,
respectively:

=

X = 'm‘Z}‘XI (23)

=13 (24)
o —2

=X -X (25)

As with the design of any one bit quantizer, we
find a threshold, Xth’ and two output levels,
aand b:

if

)?i >Xth output=b 26)

ii< Xth output=a
fori= 1,2, .., m,

27

Let q be the number of X.’s greater than ith
(=X) then to preserve X and x?

mX = (m-q) a % gb (28)
mX? = (m-q) a% + qb? (29)
Solving foraand b
YA
a=X-o (m_q) (30)
b=X+s (9 ) €1))
m-q

The reconstructed image block is transmitt-
ed by calculating a and b from equations (30)
(31) and assigning these new values to pixels
in accordance with the bit plane. The trans-
mitting image is linear quantized, inverse two-
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dimensional processing is done, and then the Table 2. MSE, SNR at the HT and WHT
original signals are replicated.
We confirmed a center block which divides Transform | MSE | SNR | SNRerea picture
into subpicture block size (8 x8). This center HT 91.451133.454 | 229.545
block comes out more data compressed and WHT 10.055| 48.787 | 189.251 2
enhanced subjective image quality more than HT 16.068 | 38.635| 213.273
any other block size. WHT 8.545 | 53.047] 178.978 3
The objective image fidelity criteria are 0T 12.794 | 43.298 | 198. 281
the MSE, SNR and SNR peak and then we look WHT 7 5641 56.385 | 173,661 4

reationshp betwen SN and subjective | 1T | s
i WHT 6.012 ] 63. 100 162. 847
picture quality is that they are proportional.
Let a value of i and j in the range of 0, 1,
..., N-1 then the error between an input image
and the corresponding output image is

e(i, j) = F (i, j) — FG,) (32)

The mean square error (MSE) is

N—1 N-1t . )
MSE= L5 5 [ # () ~F )l (33)
i=0 ;=0
An output signal has an input signal plus error (a) original girl ib) 8bit uniform quantization
that is (525 525) (64 x 64)
F(i,j) = F(ij) + e(i,j) 34 Picture 1. Original girl face

The SNR is given by

SNR=| T #60.0/ 5 X LF () FpP|

i i-0 4=0

(35)

The peak value of F(i,j) is the total dynamic
range of the output image

.. 1
SNR =|[peak values of F 2/MSE! 7"
peak [p °s (1,.])] / fa) HT. SNR=33.454 (b) WHT. SNR —=48.787

(36) Picture 2. 1 bits/pixel

The MSE, SNR, and SNR peak between the
input and the reconstructed image is com-
puted for various compression data in Table 2.

V. WHT Hardware Implementation

One dimensional WHT, coefficients for a
sequence of input signal sample values [fy,
f,,f3,f4] are [F{,F,,F3,F4] that is (a) HT. SNR —38. 635 (b} WHT. SNR=53.047

[F1,F,Fa,Fal L= (WH, 1 [f;.f2.,85,517 (37) Picture 3. 2.64 bits/pixel

(306)
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(a) HT. SNR =43.298 thh WHT. SNR =56.385

Picture 4. 4.17 bits/pixel .

(a) HT. SNR =44.704

(b) WHT. SNR —63. 100

Picture 5. Quantize noise at the transform

domain,
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(a) System block diagram

o I 4
Weighted 1
7 factor © LIS TR
r v
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L oviX X, XX §,

DELAY

(b} Calculation algorithm

Fig. 5. WHT,; system block diagram and its
calculation algorithm.
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This real time cascaded unit algorithm of WHT,4
is shown in Fig. 5.

The WHT, has HT,; and weighted factor
units. HT, consists of two unit and each unit
has shift registers (TTL 7496), data selectors

(TTL 74157), inverters (“NOT ”circuit for each
bit to make one’s complement for subtraction)
and full adders (TTL 7483).

In order to make the 2’s complement effec-
tively, one is added to the least significant bit
of the full adder in the case of subtraction.

The overall system is designed as a synchron-
ous master clock system. The input signal data
are memorized at the shift register. Add and
subtract operation are performed in the full
adder according to the clock cycle change:

In until the operation which are (X;+X;)=
D, (X1-X3 Dy, (X3+X4)=D; and (X3-X4)=
D, are performed at t,,t3,t4 and ts respective-
ly. The operations that Dy +Dj3,D,+D4,D; —D3
and D;—-D4 are done in unit2 at tg,ts,ts
and t; respectively. The weighted factor unit
is similar to one of HT4 units. In weighted
factor unit, the operations of X, —X; and
—~X,+X; are performed and the transformed
coefficients are delayed for a time being. The
transformed coefficient —X,+X; is added to
the D,+D,4 at t; and X,--X3 is added to the
Dy *'D3 at tg.

(a) A/D-D/A by H'Y

te) WHT

Fig. 6 Real time processing of grandfather.
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In the experiment, the sampling frequency
is 4 MHz and the signal coded at 4 bits/sample.
The reconstructed images are shown in Fig. 6.

We can see the noise of block transform in
Fig. 6(b) and lower electric field noise of TV
signal in (C).

6. Conclusion

The signal to noise ratio at the receiving
units has been improved by employing the
proposed WHT rather than the HT to enhance
subjective image quality.

We have developed center block truncation
coding methods for data compression, fast
Weighted Hadamard transform, and a simpli-
fied hardware realization of the shift register
and adder (subtractor).
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