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Abstract

This paper generalizes the previous results of the closed-loop eigenstructure assignment via
output feedback in linear multivariable systems.
closedloop eigenstructure assignment by output feedback are presented. Some known results
on entire eigenstructure assignment are deduced from this results.

1. Introduction

One of the popular methods of modifying
the dynamic response of a linear multivariable
system is the placement, via linear state or out-
put feedback, of the closed-loop eigenvalues
at arbitrarily prescribed points in the complex
plane. Since Wonham presented the funda-
mental result [1] on eigenvalue assignment in
linear time-invariant systems, this problem has
generated a considerable amount of literature.
Wonham’s result states that the closed-loop
eigenvalues of any controllable system may be
arbitrarily assigned by state feedback. How-
ever, in most practical situations the state is
not available directly. It is desirable to find
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Necessary and sufficient conditions for the

the condition under which the system is eigen-
value assignable with incomplete state obser-
vation.

The problem of simultaneous assignment
of eigenvalues and eigenvectors (eigenstructure
assignment) has received considerable attention
[2-8]. Most of the previous results for the
eigenstructure assignment have some limitations
in the sense that eigenvalues of the closed-loop
system are distinct or different from eigen-
values of the open-loop system or there is
requirement of state feedback. To avoid a
condition which eigenvalues of the closed-
loop system are distinct, Klein and Moore [2}
has generalized the eigenstructure assignment
in {3]. Fahmy and Tantawy [4] has generaliz-
ed the previous results [5-6] to accommodate
the case where the set of closed-loop eigen-
values and the set of the open-oop eigenvalues
have elements in common. However, these
results can not be used in the case of output
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feedback. Kimura [7] has generalized his
previous result in [8]. However, this result
can also be utilized only in the case where
eigenvalues of the closed-loop system are

distinct and different from any eigenvalues
of the open loop system.

In this paper, a generalization of eigen-
structure assignment by output feedback for
linear time-invariant multivariable systems is
presented without wusing assumptions that
eigenvalues of the closed-loop system are
distinct or different from any eigenvalues of
the open-loop system. The whole procedure
is attractively simple and provides more insight
into the eigenstructure assignment. Further-
more an algorithm for the computation of
maximal rank matrices Ni and Si satisfying
(A—~)\iIn, B) N; =0 and (A—)\iln, B) Si =1, is
also presented. This algorithm greatly facili-
tates the synthesis of entire eigenstructure
assignment by output feedback. The presented
method is illustrated by designing an output
feedback regulator for a fourth-order two-
input two-output continuous system.

II. Main Results

Consider a controllable and observable linear
time-invariant system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(1a)
(1b)

where x, u, y are n, m, r-vectors, respectively,
and A, B, C are real constant matrices of appro-
priate dimensions with B and C of full rank. If
an constant real output feedback

u(t) = Ky(t) 2)
is applied to (1), the closed-loop system be-
comes

x(t) = (A + BKOx(t). 3)

A set of complex numbers A is called sym-
metric if every nonreal element of A is accom-
panied by its conjugate and a symmetric set A
is called assignable to the system (1) if there

exists a constant real m x r matrix K such that
a set of eigenvalues of (A + BKC)is A. Let A
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= [Ny, . s Ag ] bea symmetn'c set of complex
numbers and let [d | i=1 ;s <<n} be a set

of positive integer satxsfymg 2 d =n. In[9]
=1

it is shown that if the closed-loop system has s

blocks of order d,, ...., ds’ in its Jordan canoni-

cal form, then there are s corresponding gener-

alized right eigenvector chains defined by

(A +BKC — ?\iIn)vﬂ= 0 (4a)
(A+BKC —NI) v;=Vii y
ji=2,..,d (4b)

i.
Then, s corresponding generalized left eigen-
vector chains are defined as follows;

1dl(A+BKC )\I) 0 (5a)

4 (A+BKC—NID =t/

=1, ..., di—l. (5b)
In the following, J, Jr and Jn-r are nx n, r

x r and (n-r) X (n-r) Jordan canonical matrices,

respectively, A matrix V is defined as

= [VI,V2, ,V]

S

(6)
in which Vi isannx di submatrix of the form

v

i= Wi Vi o Vig )

and similarly columns of matrices T, W, Z are
also composed of t z @G=1, ... s;j=1, ...,
d)).

The following theorem gives necessary and
sufficient conditions for the existence of K
which yields prescribed eigenvalues and eigen-
vectors.

Theorem 1: There exists a real matrix K
such that fori=1,...,s

‘Ja

(7a)
d; (7b)

(A+BKC — NI v, =0

(A +BKC = NI Vi =V, 1]

=2, ..
if and only if the following conditions are
satisfied.

1) The vectors in [v;; | i=1, ..., s; j=1,
d;] are linearly mdependent in Cn and 7\1—?\](
1mphes Vi = v (_| 1,

2) There ex1sts a set of vectors [w..

\ =1,
. 8351, .., di] such that

ij
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[A-X\T

; In» Bl

(8)

where vig = 0.
3) There exists a matrix Z in C™*™ such that
V1BW =ZCV. 9)

Proof (Sufficiency): From the condition 2)
and 3), one can obtain the following form;

AV —V]=_—-BW

=-VZ'CV (10)
Choose an output feedback gain K by
K = W(CVY [CV(CcV)y]™? (11)

From the condition 1), v.. = Vk' implies w.. =
Wk-, which verifies that the output feedback
gain (11) is a real matrix. Here, it can be shown
using (9) and (10) that the output feedback
gain (11) satisfies (7). Indeed, for K given by
an

V1BKCV = VIBW(CVY [cV(CVY]! cv
=z’ cv(cV)Y'[cvcv)] ! cv

=7Z'CV
=J-V1ayv. (12)
Therefore, (12) shows that
(A+BKQ)V=V] (13)

as required.

(Necessity): The condition 1) follows from
the property of generalized eigenvectors given
in [9]. The equation (7) can be written as

Vij

[A-A T

1 n’B]

(14)

= vﬁ-l

which shows that the second condition is also
satisfied. If there exists a real matrix K satisfy-
ing (7), then there exist generalized left eigen-
vector chains

tidl(A+ BKC—?\i I)=0 (15a)
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=1, .., d;-1 (15b)
such that
TV = I (16)
(15) can be written equivalently as
[A'—- )‘i I,C’] = tij+l 1n
Z.:

Iy
where Z = K'B'tij and tidi+1 = 0. Then, (14)
and (17) give rise to the following equations;

AV — V] =-BW
T'A-JT'=-Z'C.

(18)
(19)

Multiplying T’ on the left of (18) and V on the
right of (19) gives

T'AV - T'VI = - T'BW
T'AV - JT'V=—-Z'CV,

(20)
2n

Therefore, one can obtain from (16), (20) and
(21) the following relation;

ViBW=zZCv. (22)
Thus, the proof has been completed.

In the case of state feedback, i.e., C=In,
the condition 3) of Theorem 1 is not required
and hence one can obtain the following result
in [2].

Corollary 1: Let the matrix C be the identity

matrix. Then, there exists a real matrix K such
that for i=1, ..., s,

(A+BK——>\iIn)vﬂ=0

(A +BK ——)\iln)vﬁ=vij_1,j=2, s di

if and only if the following conditions are
satisfied.

1) The vectorsin [ v.; |i=1, ..., s;j=1, ..., d;]
are linearly independent in C" and 7\i= Xk
implies \ ='\7kj G=1, ..., di).

2) There exists a set of vectors [ w,. | i=1,
. b1
. 831, L, di ] such that
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[A_)\i In, B} =v..

ij-1
ij
where A\ 0.

Corollary 2: There exists a real matrix K
such that for i=1, ..., s,

(A+BKC—)\iIn)vil=0

(A + BKC — )\1 In) Vij = vij'l’j = 2, veey dl

if and only if there exist Viis tij for i=1, ..., s;
=1, ..., di satisfying

Yij
(ANIBT Y = vy
_WIJJ
, . 'tij ]
(A=A I, €] G541
%
such that
V=1,

where Vo = tidi+l =0.

Corollary 2 follows from the proof of
Theorem 1. A special case of Corollary 2 is
proved by Kimura [7] under the superfluous
additional hypothesis that eigenvalues of the
closed-loop system matrix (A + BKC) are
distrinct and do not include any eigenvalues
of the open-loop system A.

In the following, matrices Vo, Wo, To and
Z are defined as

Vo=IVi, Va, o, V) ]
Wo=IWy, Wa, o, W]
T, =T STl
Z,=IZ 2]

p+l’ Tp+2’ -
p+1> Zp+2s

where Vi isann x di submatrix of the form
Vi= Vi Vi o Vigi)

and similarly matrices Ti’ Wi, Zi have same
forms,

(218)
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Theorem 2: Let A = A;U A,such that A=
[)\1’ s )\p] and A= [7&)_,_1, s )\s] are symme-
p 8
tricwith 2 d.=rand X d.=n-r If A=
i=1 1 i=p+1 1

A U A, exists such that there exist vectors v..,

fori=1, .., p;1, .., di and tij’ fori=p+1, ...,
s;ij=1, .., di satisfying
1) T(')V0 =0
2) CVO is of full rank and )\i=)\k implies
Vi T Yk
where
_Vij _
[A—xl In, B] = vii'l (23)
LY
B
! ’ 1 =
(A-N1, C1 ti+1 (24)
L

with vi0=tidi +1 = 0, then there exists a real

matrix K such that a set of eigenvalues of the
closed-loop system (A + BKC)is A, and v
. . . y
G=1, .., p; 1, ..., di) and tij (i=ptl, .., s;
=1, .., di) constitute corresponding general-
ized right eigenvector and left eigenvector sets
respectively.

Proof of Theorem 2: From (23) and (24),
we can obtain the following equations;

AVO—VOJI_=—BWo (25)
T(;A—Jn_r T6=—ZOC. (26)
Then, an output feedback gain
= -1
K= W0 (CVO) Q27
satisfies the following equation;
(A+BKOV =V J. (28)

Multiplying T(') on the left of (25) and v,
on the right of (26) gives

T AV - T VI, =—TBW,,

o°"o 29

o T

’

T, AV, — 1, T.V, =

° —Z,CV,,. 30)

Using the condition 1), one can obtain the
following equation;
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TOBW0=ZOCV0‘ 31)

Fromn (27) and (31), one can show that

T, (A+BKC)

=T ’ -1
= T,A+TBW (CV )" C
TA+ZC

Ty TO.

(32)

Equations (28) and (32) show that the closed-
loop system matrix (A+BKC) has A as a
set of eigenvalues and columns of Vo and To
constitute corresponding generalized right
eigenvector and left eigenvector sets.

A design procedure based on Theorem 2
for finding a desired feedback matrix K is
given in the following.

Step 1: Find maximal rank matrices

N,. S,.
|1 | "l
Ni = > Si = Py
Noi | 152
Nl o [50]
N =" 1k| & = [Z1k
Nesl ST
Nok | | S2k |
for =1, .., p; k=pt+1, ..., s satisfying the fol-

lowing relation;

[A—-)xi I, Bl [S;; N;J =11, 0] (33a)

[A—A L, CT IS, N1 =11,0]  (33b)

where N; € C(n+m)xm’ 5, € C(n+m)xn’

Ny €CU¥)XT g §, e clmtnxn,

Step 2: Form the generalized right eigen-
vectors and left eigenvectors for i=1, ..., p;
k=p+1, ..., s as follows;

(342)

Vi = Sliv"-l + Nlipij’ i=1,..,d

i ij i
tkj= Slk tkj+1 + lepkj’ =1, ..., dk (34b)

where vi0=tkdk+1 = 0 and vectors Pjj (=1,

. 8 1, L di) are selected to satisfy condi-
tion 1) and 2) of Theorem 2.
Step 3: Calculate vector chains as follows;

Systems
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Wi = Saivj1 * NoiPyj,
i=1, ..., p;i=1, ..., d; (35)
Step 4: Calculate the output feedback gain
= -1
K=W, (V! (36)

Remark 1: If the matrix C is the identity
matrix (in case of state feedback), condition
1) of Theorem 2 is not required. The eigen-
value-assignability follows readily for this case.
Assume that A does not include any open-loop
eigenvalues. Then, the following matrices

Nj;= §I,-A)'B
Noi = Iy
$1; = — (\L—A)!
Sy; = 0

satisfy (33). (34a) and (35) can be written as

Vit = NPy
= (\I,—A)Y'Bp;
_ il
Vi = S NPyt +Nppy
= (-1l 1 -A)TBpy + ... +
O 1,~A)Y ' Bpy, =2, ..., 4
Wi = Py i=1, .., di'

Noting that [6]
&
ark
k=1,2,..

SO = (=DF k) 1 -A) K+ Dp,

where S(A) = ()\In—A)'l B and using (36), the
following relationship is obtained

KS(p;y =y
1 il
K[(j-1)| d)\j-l S()\i)pi] +..+ S()\I)PU]=P1J
fori=1,..,s;5~1, .., di'
This is corresponding to the previous result [4]
obtained using Brogan’s approach [10-11]}.
An algorithm for the computation of the
maximal rank matrices satisfying (A——7\i | B)
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Ni=0 and (A-—)\i In, B) Si =1, is given by the
following theorem, where the synthesis of out-
put feedback regulators by entire eigenstructure
assignment is greatly facilitated.

Theorem 3: If the pair (A, B) is controllable
and the matrix B is full rank, the maximal rank
matrices N; and Si satisfying (A—)\i L, B)Ni =
0 and (A—)\i In, B) Si = In can be determined
through column operations as follows:

A—)\iln,B

I.,0

n’

I Ui, U,

n+m

where ~{ ] represents column operations of a
matrix { ]. Then N, = U, and 8; = U, respec-
tively.

Proof of Theorem 3: The rank of the matrix
(A——)\i I, B) is n if and only if the pair (A, B) is
controllable. Therefore we can always obtain
the following matrix form through some
column operations:

I, o]

A— )\1 In, B B
In+m X XJ
The column operations imply

~ A——)\i I,B B A——)\i I.B

I 1 [Ul U2]
n+m n+m
- (A")‘i In’ B) U, (A—?xi In’ B)U,
Ui, U, ’

where U ectmxn .4 gy,eclntm)xm
Thus Si=Ul and Ni=U2 .

III. A Numerical Example

Let us now consider an example not covered
by the theory developed in the previous work.
Consider a system given by

- O O O
oo o™
-—-o;——o
o~o0®°
oo -0
-0 O C
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1000

0100
Let a set of the desired eigenvalues be A =
[ —1, —2 ] such that dl =2 and d; = 2. Then,

elements of the maximal rank matrices can be
found using Theorem 3 as follows;

ey [0 000
01 1 000
Ny = S, = s
Mg "M loo01 0
L1 9 0 0 0 0]
[1 8] 114 0
Ny = , Sa= ,
01 0 01 1
(17 -30] [0 0 0 0]
Np=| 3 -3|,5,=[0 0 12},
-2 2 0001
L1 -1 000 0]
_ [3861] - [1 0 0 0]
Ny = » Sx; ,
|5 8] 012 4
The generalized eigenvectors can be represented
as
Y11 = Nppu
viz2 = SuNupu +Nupn
tzz = Nyp2p2 _
tar = S12Ni2p2s + Nippas

To select eigenvectors satisfying the conditions
1) and 2) of Theorem 2, we first check the
condition 1) in the following. From the above
equation, one can obtain

Vi1 = P22Ni2 Niypyg
313

=Pp P11 .
2| 4 4

If py; and py, are selected asp;; = [0 1]  and
P22 = [0 1]’, the above equation becomes zero.
Then,

t22V12= P22 N12S11 N1 P1sy

+pu N2 Nii P12
2 15 313
=py 2 45 Putp2 30 P12

=—15+[-3 0] p12.

(220)
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Therefore, py, is selected as py3=[—5 0]’ such
that the above equation becomes zero. Since

t21v11 = DP22N12S12N11P1t+ Par N2 Nut b
L] REERE
= P22 113 P11 "'1321~3 0 Pn1

13+py[13 0],

similarly p,; = [—1 0]'. Then, one can show

that

ts1Vi2= P32 Ni2S1281N11P1s
+pu N SuNupn
+pa N3 812 N1t P2
+ Py NNy Py

| 5 -2 -15
=pa 1 5 Pt P 2 15| Pn
a3 3 a3
P22 1 13 P12t pa1 3 0 P12

Since T(') V, = 0, the condition 1) of Theorem
2 is satisfied. Thus, the generalized right eigen-

vectors and left eigenvectors selected as above
vy = [ -1 1 -9 9]
Vip = [ 0 -1 -4 —5 ]'
tyy = [ —-17 1 1 -1 ]'
t22 = [ --30 -3 2 —1 ]

also satisfy the condition 2) of Theorem 2.

Then,
w11 = Najpu
= [8 1}
W12 = Saviit NaiPna
= [6 18}
8 6
w =
° 1 18

0
-1

v, -[1 ]

(221)
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so that the output feedback matrix determined
by (36) is

~14
~19

—6
—18

and therefore

(A+BKC) = 0

1
-6
0
—-18 18

- O - O
o - O O

which has the Jordan canonical form

-1 1 0 0
0 -1 0 O
0 0 2 1
0 0 0 -2

together with the generalized left eigenvectors
Vi1, Viz2 for A; = —1, and the generalized right
eigenvectors t,1, ty for A;=—2, as required.

IV. Conclusion

In this paper, a generalization of entire
eigenstructure assignment by output feedback
for linear time-invariant multivariable systems
has been presented without using assumptions
that eigenvalues of the closed-loop system are
distinct or different from any eigenvalues of the
open-loop system. Necessary and sufficient
conditions show that the closed-loop eigen-
structure assignment by output feedback is
constrained by the requirement that the gener-
alized right eigenvectors and left eigenvectors
lie in certain subspaces. The presented method
has been illustrated by designing an output
feedback regulator for a fourth-order two-input
two-output continuous system.
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