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Admissibility of Some Stepwise Bayes Estimators*

Byung Hwee Kim*

ABSTRACT

This paper treats the problem of estimating an arbitrary parametric function in the
case when the parameter and sample spaces are countable and the decision space is
arbitrary. Using the notions of a stepwise Bayesian procedure and finite admissibility,
a theorem is proved. It shows that under some assumptions, every finitely admissible
estimator is unique stepwise Bayes with respect to a finite or countable sequence of
mutually orthogonal priors with finite supports. Under an additional assumption, it is
shown that the converse is true as well. The first can be also extended to the case
when the parameter and sample spaces are arbitrary, i.e,, not necessarily countable,

and the underlying probability distributions are discrete,
1. Introduction

Consider the statistical estimation problem involving the countable parameter space
OCR?, the p-dimensional Euclidean space; the decision space DCR™; the nonnegative
loss function L(-,+) on ©XD; a random variable X which takes on values in some
countable sample space yCR"; and family, {p(.;6) : 0B}, of possible probability
functions for X,

Suppose that it is desired to estimate some parametric function g(8) and assume that

g(B)CD, where g(B)={g(0) : 6=O}. Let & denote an estimator (possible randomized)
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from y to D*, the space of all probability distribtions on D, with the risk function
R(0,5):ZIL(0, TYdo(x)p(x ; 0),
x<X

where for each given x<y, T is a random variable with probability distribution d(x)
over D. This leads to the usual definitions; for example, J* is admissible in D* if
there does not exist any other estimator ¢ such that R(#,8)<{R(0#,0%*) fo1all 66 with
strict inequality for at least one 60,

The (ordinary) Bayesian procedure that uses a prior distribution /7 on O to obtain a
unique Bayes estimator has been widely used as a tool to obtain admissible estimators;
for example, if O is countable and /I gives positive probability to each §<6, then a
Bayes estimator with respect to I is admissible (see Berger, 1985). But there are some
priors which yield a class of Bayes estimators rather than a unique one. Moreover, this
class usually consists of inadmissible as well as admissible estimators, Hsuan (1979)
proposed an idea of stepwisely applying the Bayesian procedure to extract admissible
estimators out of that class, called the “Stepwise Bayesian Procedure”, The idea is to
use an ordered set of mutually orthogonal priors to get a stepwise Bayes estimstors, He
used this idea in order to characterize the (minimal) complete class when the parameter
space is finite, Later, using the same idea, Meeden and Ghosh (1981) obtained the
complete class theorem in the case when the parameter and sample spaces are finite,
and Brown (1981) described the complete class theorem when the sample space is finite,

But, in some cases, it is not easy to define a set of mutually orthogonal priors on
an infiﬁite parameter space, For this reason, Meeden and Ghosh (1982) introduced a

notion called “finite admissibility”. The basic idea of this notion is to have admissibi-

lity on certain finite subset of the parameter space. They also showed that every fini-

tely admissible estimator is admissible, but the converse is not necessarily true.

In Section 2 we first give some assumptions imposed upon the probability function
p(x;0), the decision space D, and the loss function L. We then provide precise defini-
tions of notions introduced above, In Section 3 we verify that, under assumptions given
in Section 2, every finitely admissible estimator is unique stepwise Bayes with respect
to a finite or countable sequence of mutually orthogonal priors with finite supports
(Theorem 3.1), and conversely (Theorem 3.2 and Theorem 3.3). Section 4 contains an

extension (Theorem 4.1) of Theorem 3.1 to the case when the sample space y and the

parameter space © are arbitrary, i

»

e., not necessarily countable, and the underlying
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probability distributions are discrete. Also, some closing remarks are given in this

section,
2. Assumptions and definitions

Throughqut this article, we make the following two assumptions:

(A1) For each x=y, p(x; 0)>0 for at least one =6,

(A2) D and L are such that > L(#,d)I(#) is minimized uniquely with respect to
(1=

d for any prior distribution [,
We now give the precise definitions of orthogonal priors, stepwise Bayes estimator,
and finite admissibility.
Definition 2.1. Two priors /' and [I* are said to be orthogonal if O(I*)OUI?) is
empty where 8(f)={6: 1(6)>0} for any prior 1. @) is called the support of II.
Before giving the definition of stepwise Bayes estimator, we need the following
notations:

Let a(x ; Iy=3_p(x; 6)T(#) be the marginal density of X with respect to the prior
6co

II. For a nonempty set S= (/' : i=1,2,---} of priors, define the following sets
M={xc<y : h(x ; TY)>0)
and

Ai={xcSy : h(x; I)>0 and xg= |J A"} for all i>1.

il<i
Remark 2.1 Some of the A’ ’s might be empty and that the order in which the IT''s
appear in the sequence is important in the construction of the set {AF 1 i=1,2,]. A
different ordering of the /I ’s may result in a different set of A ’s.
Definition 2. 2 An estimator J, defined on y, is said to be stepwise Bayes with respect

to an ordered set {II' : i=1,2,---} of priors if 8(x)=0'(x) for x&A*, i=1,2,--, where

0% is Bayes with respect to /I', Furthermore, if | Ai=y, then such an estimator J is
i=1

said to be unique stepwise Bayes with respect to an ordered set {ITt:i=1,2,--} of
priors,
Remark 2,2 From the above definition, we notice that a stepwise Bayes estimator

with respect to {/I‘} is necessarily a Bayes estimator with respect to /', but it need

not be Bayes with respect to I',i=2,3,---. We also note that if {/I'} are such that D

i=1
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©(/11)=6, then the stepwise Bayes estimator in this case is unique, however, the con-
verse is not true,

Now, we give an example for Definition 2.2, This example was treated in Meeden
and Ghosh (1981).

Example 2.1 Let X be a random variable with the discrete uniform distribution where
the probability function of X is given by p(x; 8)=Py(X=x)=0"!, x=1,2,--,0; 0=
{1,2,---}==y. It is desired to estimate g(#)=0 under squared error loss and D=[1,0).
Consider a prior ditsribution /7* with [*(1)=1. Then, it is straightforward to show
that A'={1} and any estmators such that §'(1)=1 are Bayes with respect to /I'. Now,
consider a second prior [? with II?(6)=4/[3(0*—1)], 6=2,3,---. If we compute the
Bayes estimators with respect to II? for those x ’s for which the Bayes estimators with
respect to /I* are not defined, 7. e, x=2,3,:--, then we get 0%(x)==2x—1, x==2,3,--.
Note that A2=2{2,3,---}. Since A'|JA%=y, the estimator § such that d(x)=0d(x), x4,
i=1,2, i.e., d(x)=2x—1, x=1,2, -, is unique stepwise Bayes with respect to {/I*: i=
1,2}. Note that Z/* and /I? are mutually orthogonal priors such that 8(f4")|JO(I7?) =06
and that the estimator & is not Bayes with respect to /12, It is easy to show that the
estimator 8, such that 9,(1)=3, J,(x)=2x—1, x=2,3,---, is Bayes with respect to />,
It is also remarked that there exists no /7 such that & is the unique stepwise Bayes
estimator with respect to Z7. (It stands out only if more than one prior is used in a
stepwise manner),

Meeden, Ghosh, and Vardeman(1985) utilized the stepwise Bayesian procedure in stu-
dying admissibility questions in nonparametric problems and in proving a detailed deve-
lopment of the relationship between nonparametric estimation and finite population esti-
mation, The recent work of Brown(1984) used similar techniques to give a detailed
study of the admissibility of various invariant nonparametfic estimators, Brown and
Farrell(1985) constructed a complete class of stepwise Bayes estimators in the setting of
discrete exponential family using the idea of the stepwise Bayesian procedure, Also,
Cohen and Kuo(1985), using the same idea, studied the admissibility of the empirical
distribution function.

Next, we give the precise definition of finite admissibility by Meeden and Ghosh
(1982).

Definition 2.3 An estimator ¢ is said to be finitely admissible if for any parameter

point 6,=6 there exists a finite subset 6, of O containing 6§, such that when 8, is
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taken as a restricted parameter space, ¢ is admissible.

Meeden and Ghosh(1982) showed that every finitely admissible estimator is admiss-
ible, but the converse is not necessarily true. Using the notions of finite admissibility
and the stepwise Bayesian procedure, Meeddn and Ghosh(1983) studied admissibility in
the case of choosing between experiments and gave applications to finite population
sampling, Also, Ghosh and Meeden(1983), Meeden and Ghosh(1982), and Vardeman
and Meeden(1983) used the same idea to give various admissibility results in finite

population sampling.

3. Unique Stepwise Bayes Estmators and Finitely Admissible Estimators

Before stating and proving the main results of this section, which characterize the
class of finitely admissible estimators, we need the following lemma:

Lemma 3.1 Let © and y be finite and countable, respectively. In addition to the assum-
ptions (A1) and (A2), assume that each admissible estimator has finite risk for each =6,
Then, an estimator is admissible if and only if it is unique stepwise Bayes with vespect to
a finite sequence of mutually ovthogonal priors.

Since the above lemma is essentially equivalent to the Theorms 1,2, and the related
discussion in Hsuan(1979), the proof of the lemma is therefore omitted.

Now, we give a main result which shows that every finitely admissible estimator is
unique stepwise Bayes,

Theorem 3.1 Assume (Al) and (A2) and suppose that each finitely admissible estimator
has finite risk for each 60. Then, every finitely admissible estimator is unique stepwise
Bayes with respect to a finite or countable sequence of wmutually orthogonal priors with finite
supporis,

Proof, First, note that since O is countable, it can be put into one-to-one correspon-
dence with N, the set of natural numbers, and, hence, © can be indexed with positive
integers, i.e., the elements § of O can be arranged in a sequence, {6,}, n=I1,2-.-, of
distinct terms. Now, suppose that d* is a finitely admissible estimator. Pick 8,=6 and
a finite subset O,* of © containing #, for which §* is admissible when ©,* is taken as
the restricted parameter space. Then, 6,* yields a subset A, of ¥ where A,—{x<y:
p(x 5 0)>0 for at least one /=6 *}. Note that A, is not empty by assumption (Al), and

A; is at most countable, Since ¢* is admissible for the restricted problem (8,*, A;)
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with @ restricted to €,* and x restricted to 4, and §* has finite risk for each 6€6*
in this restricted problem by assumption of the theorem, 0% is stepwise Bayes with
respect to a finite sequence, {IT}7: say, of mutually orthogonal priors with finite

supports. Note that the risk of d* in the restricted problem (6%, 4,) is given by

R(l)(e,a*)ingL(ﬁ, T)do*(x) —Z!%’ 66, *

xedy

for each given x&4,,

where T is a random variable with probability distribution d*(x) over D, Also note

that &% is uniquely determined for x&4,; by assumption (A2), and that U 0. *(l1,1)CTH6,*
i=1

where 6,*(I1,))={0<6,* : I,'(6)>0}, 1=1,2,-, " Now define

o+=[ U exar]ue:, 3.1

where 61:{066——”0 6, *(I})y : 3 p(x; 0)=1}. Note that 6,** also yields 4, which

i=1 xed,

is generated by 6,* Next, let §,* be the element with the smallest indexing integer in
6—0,**= (<06 : £0,**}, and let 6, be a finite subset of @ which contains @,* and
for which &* is admissible when 6, is taken as the restricted parameter space. Again,
O, yields a subset y, of y where y,=={r&y : p(x; 6)>0 for at least one 6=8,}. Then
¥, is not empty by assumption (A1). Note that 6,%*6, need not be empty. We first
show that &% is admissible when 6,—8,**(16,=86,* is taken as a restricted parameter
space. To this end, it is sufficient to consider estimators d such that d(x)=0*(x) for
xe&A,. Suppose that ¢* is not admissible for the restricted problem (8,*, A,) where
A,={x&y : p(x; 6}>0 for at least one f#=6,*}. Note that A, is not empty by assump-
tion (A1). Then, there exists a ' such that for all 0<6,*,

R®(6,0)<R® (6, 0%) (3.2)

with strict inequality for at least one §&6,*, where

R<2)(0,5>i§jDL(0, T)dd(x) "%’(1%0;)0—)* 06>

oy
is the risk of an estimator & in the restricted problem (8,*,4,) and for each given
r&4,, T is a random variable with probability distribution §(x) over D. But for
0=06,%*N6,,

R'(6,8")=R'(0,0*) (3.3)

since 8'(x)=0%(x) for x&4;, where R'(6,0) denotes the risk of an estimator d in the
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restricted problem (8,,y,). Hence, if follows (3.2) and (3.3) that for §=6,,

R (6, 5>:LE2M p(x; «9)] R (g, 5')+2AJDL<0, T)dd' (x)p(x ; 6)

xEX3—

55265 0] R2G.00+32 [ 1O, T)dox(x)p(x ; 0)

xeXz~

-
<[ 065 0] R20,89 457 [ 10, Tyasrpies 0)
=

gjbz;(e, T)d6*(x)p(x ; 6)

32, [ L0, Tyas p(x; 0)

XEX2~

=52[ L, TYas*()p(x 5 6)

=R'(6,0%) (3.4
with strict inequality for some 0<6,%C6O,. But (3.4) contradicts the fact that d* is
admissible when 6, is taken as the restricted paremeter space. Hence, 0* is admissible
in the restricted problem (8,*, 4,). Note that 6,* is finite, but A, may be countable,
and R'®(6,6%), the risk of 6* in the restricted problem (8,*, A,), is finite for each
9<0,* by assumption of the theorem. Hence, by Lemma 3,1, &* is stepwise Bayes with
respect to a finite sequence, {/,/}7: say, of mutually orthogonal priors with finite

supports, and ¢* is uniquely determined for x& A, by assumption (A2), Also note that
U 6,*(I1,)Z6,*, and hence, that [U @1*(11;')] U [Lj @2*07;)] C6,**(0,*, where
J=1 i=1 j=1

6.*(I,)) N6,*(I7) is empty for all i=1,2,+,n, and j=1,2,+-, 1, and @,** is as in
(3.1). It can be also noted that §* is uniquely determined for x&4,J 4, by assumption
(A2). Continuing the above process, if at some finite stage all the x 's are used up,

then we are done, and we conclude that 0* is unique stepwise Bayes with respect to a

finite sequence, (I}, say, of mutually orthogonal priors with finite supports. It may
k .

be noted that |J O(Z)—O. On the other hand, if at every finite stage all the x ’s are
i=1

not used up, then we have a countable sequence, (Z,'} say, i=1,2,-, n, I=1,2, -, of

mutually orthogonal priors. Now, it is clear that

U 6*+Ce (3.5)
l=1

‘where @;**:[gl 8;*(1];")] U®6' with 6,* and 8" appropriately defined at the I'" stage,

{=1,2,---. We show that the equality in (3.5) must happen, To this end, suppose that
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tj ©,#+*C6. Then, we have the element with the smallest indexing integer, 0% say,
l=1

in G—Lj ©,** Note that at the (j+1)** stage of the above process f;* must be a me-

=1
i+l
mber of JU 6,%*, j=1,2,--, with §;*=0,. This implies that we must have equality in
=1

(3.5). From this fact, it follows from assumption (A1) that 0* is unique stepwise
Bayes with respect to a countable sequence, {II'},~ say, of mutually orthogonal priors

with finite supports.

The following theorem shows that the converse of Theorem 3.1 is also true provided

it is assumed that 6= D O([") in addition to the assumptions of Theorem 3.1.

i=1

Theorem 3.2 If 6% is unique stepwise Bayes with respect to a countable sequence, {Iry,”,
of mutually orthogonal priors with finite supports, @:G@([]"), and each finitely admis-
i=1

sible estimator has finite risk for each <O, then 0% is finitely admissible in the whole
problem (0,%).
Proof. Suppose not, then there exists a 6, such that for every finite subset of &

containing 8,, 0* is inadmissible, Let i, be such that @([1)={0=86 : M*()>0} contains

6,. This i, always exists and is unique since =) @[, Let O'= ) @Wr'). Then,
i=1 i=1

since ©' is a finite subset of ® containing 6,,6* is inadmissible when @' is taken to be
the restricted parameter space, But d* is unique stepwise Bayes with respect to a finite
sequence, {77}, of mutually orthogonal priors with finite supports. Note that @' yield
a subset ¥’ of y where y'=f{x&y : p(x; 6)>0 for at least one #=0'}. Also note that
' may be at most countable, Since each finitely admissible estimator has finite risk
for each #<6' in the whole problem, it follows from Lemma 3.1 that §* is admissible
in the restricted problem (8',y'). Hence, we have a comiradiction, and the proof is

completed.

Remark 3.1 In Theorem 3.2, condition 6:[3 @(II') is needed since otherwise there
i=1

may not exist any 6(J°) containing 6, where , is as in the proof of the theorem.
It may be also remarked that combining Theorem 3.1 with Theorem 3.2 provides a
characterization of the class of all finitely admissible estimators,

In Theorem 3.2, we assumed that each finitely admissible estimator has finite risk
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for each /=6. But, as will be seen in the following theorem, this assumption may be
replaced by assumption that for each <=6, p(x; 6)>0 for only finitely many «.
Theorem 3.3 If 8* is unique stepwise Bayes with respect to a countable sequence, {(II'},~,

of mutually orthogonal priors with finite supports and for each =6, p(x; 0)>0 for only
finitely many x and @:G OT?), then 6* is Sfinitely admissible,
i=1

Proof. With 6’ and y' as in the proof of Theorem 3. 2, %' is a finite subset of y
since @’ is finite. Hence, by Theorem 1 of Meeden and Ghosh (1981), o0* is admissible
in the restricted problem CIN

Remark 3.2 All the previous theorems do not provide the characterization of the
class of all admissible estimators, They only give the characterization of the class of
all finitely admissible estimators, In general, it is very hard to characterize the class

of all admissible estimaters in the case that the parameter space is not compact,
4. An Extension and Closing Remarks

Theorem 3.1 can be also extended to the case when the parameter and sample spaces
are arbitrary subsets of the Euclidean space and the underlying probability distributions
are discrete, The extension is as follows:

Theorem 4.1 Assume (A1) and (A2) of Section 2 and assume that each finitely admissible
estimator has finite risk for each 60, Then every finitely admissible estimator is a
unique stepwise Bayes estimator with respect to an ordered set {[°:acI) of mutually
orthgonal priors with finite supports where I is a well ordered set with smallest element
a(l).

The proof follows exactly the same lines as that of Theorem 3.1 if we apply the
principle of transfinite induction,

But extensions of Theorems 3.2 and 3.3 are not available to this situation, The
availability of these extensions is closely related to a question whether if §* is inadmis-
sible for a restricted problem (6’ +X'), then 0* is inadmissible for the original problem
(8,%), where 6'CH and ¥'={x&y: p(x; 6}>0 for at least one =6}, Moreover,
this question is closely related to another interesting question whether if §* is admissi-
ble for the original problem (8,%), then for any 0,=06, there exists the smallest subset.

6, of O containing 6, for which 6* is admissible when 6, is taken as the restricted
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parameter space. The second question seems to be much harder to answer than the first

one. The following example shows that even the first question is not necessarily true,
Example 4.1 Let X have the probability function p(x ; 8) =P(X=x) =071, x=1,2, -,

f:6—={1,2,-}=—y. In this case Blyth (1974) has proved the admissibility of 6*(X)=X

as an estimator of @ under squared error loss by using a Cramér-Rao type inequality (See
¢

also Meeden and Gosh (1981)). This estimator has risk R(#,5*) =07y " (x—0)%. Consi-
x=1

der the restricted problem (&',%') where 6'={2,3,---} and y'={xcy : p(x; 6)>0 for at
least one 0=6'}=y. Also, consider an estimator d' such that §'(1)=2, d'(x)=x, x—=

8
2,3,---. Then, the risk of &' is given by R(ﬂ,5’):(9'1{(2~ﬁ)2+zu]2(xA0)2}, Now,

R(6,0%)—R(6,0")=0"*(20—3)>0 for all 9=6’'. Hence, 0* is inadmissible for the rest-
ricted problem (6',%').
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