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A New Deletion Criterion of Principal Components

Regression with Orientations of the Parameters

Wonwoo Lee*

ABSTRACT

The principal components regression is one of the substitutes for least squares method
when there exists multicollinearity in the multiple linear regression model. It is observed
graphically that the performance of the principal components regression is strongly
dependent upon the values of the parameters, Accordingly, a new deletion criterion
which determines proper principal components to be deleted from the analysis is developed
and its usefulness is checked by simulations.

1. Introduction

The multiple linear regression (MLR) model is one of the most popular methods for
exploring linear relationships between a response variable and a set of regressor vari-
ables, Under the assumptions of identically, independently distributed random errors,
the least squares (LS) estimation method provides the well-known best linear unbiased
estimator. Unfortunately, in many practical situations, the regressor variables are not
orthogonal and hence, in such cases, the statistical properties of the LS estimator can
be adversely affected.

Confronted with multicollinearity in the model, some alternative estimation techniques
to the LS method have been developed to remedy the problem resulting from severe
multicollinearity. Among the alternatives the principal components (PC) estimation

method is one of prevalent methods, which leads to improve over the LS estimatorin
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terms of mean square error (MSE).

In Section 2 the MLR model is explained in terms of the eigenvalue decomposition
and the singular value decomposition, followed by a review of principal components
analysis along with Massy’s deletion criterion. And the new criterion, based upon the
orientation of the unknown parameter vector and the value of ¢°, will be introduced in
Section 3. Section 4 is devoted to the problems related to principal components regression
with respect to the orientations of the parameters by graphs. Finally, the criterion is

evaluated by simulation studies in Section 5 and the conclusion is in Section 6.

9. Principal Components Analysis

2.1 Linear Regression Model

The general mutiple linear regression model is a statistical model which attempts
to explain the response variable, y, by a linear combination of p explantory variables,
X, -, X,, that is

y=XB+e, Y]
where vy is an #nx1 vector of observed responses, X is an #nXxp full (column) rank
matrix of nonstochastic regressor variables, § is a pXx1 vector of parameters, and ¢ is
an nx1 random vector whose mean is 0 and variance matrix is 0%[.xn.

For convenience, the columns of X are assumed to be standadized so that x;'1=0 and
x'x;=1, j=1,",p.

The MLR model, as in equation (1), can be equivalently expressed by the eigenvalue
decompositon or the singular value decomposition which is often useful in the regression
context,

The eigenvalue decomposition results in

y=Za-+e, (2)
where Z=XV={(z,,-,2,), a=V'8 and V is the matrix of the eigenvectors of X'X,
that is, V=(v,,---,v,). Note that the column vectors z; are called the principal components,

The singular value decomposition theorem allows X to be decomposed as

X=ULV',
where U is the matrix of the eigenvectors associated with the positive eigenvalues of

XX' and L is the diagonal matrix of the so called singular values of X. Thus, another
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reparameterized MLR model can be obtained as follows;
y=Ur-+te, (3)
where y=LV'3.
. It is worthwhile to observe several facts; (a) Z'Z=/A, where A=diag (A;, 4, -+, 4p)
and A;'s are the eigenvalues of X'X (b) L=AY? and (¢) y=AY*a. Without loss of
generality, furthermore, the eigenvalues, A,--, 4, are assumed to be ordered in magni-
tude, that is, A,>--->4,.
Multicollinearity refers to the near linear dependencies that may exist among the

regressors. Severe multicollinearity is said to exist if there are nonzero . constant ¢;'s

such that
é c;x57=0,
where x; is the jth column vector of X, Multicollinearity can have adverse effects on
the LS solution and related procedures [Belsley, Kuh, and -Welch(1980), Myers(1986),
etc. ]. v
When multicollinearity is detected from the MLR model, an alternative to the LS

method is the principal components regression method which provides a biased estimator

of 8.
2.2 Principal Components Estimator

. The .principal components estimator of 8 can be obtained from the reparameterized
model (2), y=Za1e. Note that the PCs are ordered so that z; is the jth PC associated
with the jth largest eigenvalue of X'X,
The PC estimation procedure simply amounts to deleting some PCs from the model

(2) and, then, applying the LS method to the restricted form as

y=2Z a1+ 20, ¢, »
where Z,=(z;, . 2,), Zy=(2ruy, ", 2), r=(a;, -+, @,)’, and a,—=(,,,, *, &), Assuming
that the columns of Z, are the deleted PCs, the restricted model is

y=Z,a;+¢

and the LS estimator of a, is a; 1s=(Z,'Z,)7'Z,"y. Thus, the PC estimator of 8 can be
given as

bpe=Vya; 15

=Vi(Z,/Z)7Zy,
where V,=(vy, -, v,).
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However, it is important how to choose the principal components to be deleted,
Massy (1965) suggested two criteria for deleting PCs: the eigenvalue criterion and the
t-value criterion,

The eigenvalue criterion, which is usually used in PC analysis, leads the principal
components corresponding to small eigenvalues to be deleted, The major issue is to
determine which eigenvalues are small. In general, it is difficult to choose appropriate
PCs to be [retained in the analysis unless A,>1.,, and 2120, While, the ¢-value
criterion is based upon the #-test for each coefficient.

The two criteria, the eigenvalue criterion and the f-value criterion, would yield
nearly identical results if the following condition is met:

Ry '>R,; > >R, 7, (4)
where R,.? denotes the squared sample correlation coefficient between y and z;, Note
that R, =2;a; s j=1,--,p and A, >--->1,. In such a case, the ¢-test statistics have
the the same order as the eigenvalues so that the two criteria coincide when an appro-
priate significace level is chosen. However, the condition (4) may not, in general,
hold since the order of R,.? depends mainly upon the order of the unknown parameter
75, j=1,+-+,p. Note also that,

E(Aa; 1s8) =1 +0°, j=1,---,p. (5)

It is important to emphasize that when the condition (4) is not satisfied, neither of
the two criteria should be used as a deletion criterion, Indeed, a new deletion criterion

that accounts for the orientation of 7 can be developed.

3. New Deletion Criterion

Since the PC estimator resulting from applying the LS method to the reduced set of
the PCs is a biased estimator it is natural to consider the MSE of bpc. Furthermore,
the necessary and sufficient condition for which the MSE of the PC estimator is smaller
than that of the LS estimator can be developed and used to define a new deletion

criterion,
3.1 MSE: A Performance Measure for Biased Estimator

The MSE is one of the most useful performance measures for biased estimatots, The
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expression of the MSE of the PC estimator bpe, can be decomposed into components as
follows:
MSE(ch):j,;j MSE(b; pe)
=E(bpc—Ebpc)' (bpc—Ebpc)
+ (Ebpe—8)' (Ebpc—f) (6)
The first and second terms in (6) will be regarded as the ‘variance’ and the ‘squared-
bias’ components, respectively. It is well known that using a biased estimator, a large
reduction in the ‘variance’ component is expected while some increase in the ‘squared-
bias’ component is accepted.
It is often of interest to consider the matrix form of MSE, denoted MixMSE(bpc),
MtxMSE (bpc)=E(bpc— ) (bpc—8)'
=Var(bpc) +Bias(bpc)Bias(bpc)’, (7
where Bias(bpc) =FEbpc— 8.
In order to compare the performances of b.s and bp¢ in terms of MSE, either form
in (6) or (7) can be used. That is, either MSE(brs) —MSE(bpe) or MixMSE(bLs)~
MixMSE(bpe) can be used since the former is the nonnegative if and only if the latter

is positive semi-definite [see Theobald(1974)].
3.2 Unbiased Optimal Deletion Criterion

In order for the MSE of bpc to be smaller than that of b.s, the difference, MixMSE
(brs) —MixMSE(bp;) must be positive semi-definite. Since the matrix form of the
MSE of bpe is

MitxMSE(bpe) =02V, A,V + Voo, VY
where A,=diag(;, -, 4,) and A,—diag(4,,,,-,4,), the difference of the two is
MtxMSE(bs) — MtxMSE(bpc)

=g2V, (A, ' —o a0, ) V. (8)
Thus, it suffices to show that (A,"'—o¢~2a,a,') is positive semi-definite which is,
equivalently,

d' (A, — 0 %a,a,')d>0 _ 9
for any nonzero (p—r) X1 vector d,

The relationship (9) can be rewritten as

d’azgzl_d_ 2
d'A,d —
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so that, based upon the Cauchy-Schwarz inequality, the relationship is equivalent to

d'ayay'd
aA,"d

Thus, the necessary and sufficient condition is obtained as

a,' Ay, 0 (10)

sub <a?,
d

or, equivalently,

jéllﬂjzéo'z (11)
The condition (11) depends upon the number of the deleted PCs, the length of a,, and
the magnitude of &2

Note that this condition does not imply to delete the principal component associated

with the smallest eigenvalue. In fact, it can be reexpressed by using the singular value
decomposition as

270, (12)
where D is the set of the indexes whose principal components are supposed to be deleted,
The set D includes the maximum number of the indexes for which 7;2 are small in
magnitude and satisfied with the condition (12).

Since the unbiased estimators for the unknown parameters are, from (5),

PN .
ri¥=2Aa; 15—, (13)
the substitution of the (13) into (12) results in
2 (Gaj 1" ~s") <52, 14
jeD

Thus, the inequality (14) can be used as a deletion criterion named the unbiased
optimal deletion criterion, That is, based on this criterion, delete those principal com-
ponents, z;, j&D for which (14) is satisfied. The usefulness of this unbiased optimal
deletion criterion will be seen by simulation studies in section 5.

Since the necessary and sufficient condition (12) is dependent on the magnitude of the
7% for j&D and ¢?, the orientation of the unknown parameter vector and the size of o¢*
are closely related to the evaluation of principal components analysis. In the following
section, thus, the situation for which the regular PC estimator resulting form using
either the eigenvalue criterion or the #-value criterion does not improve over the LS
estimator will be introduced by considering the orientations of the unknown parameter

vector,
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4. Orientation of the Parameters

It has been mentioned that the order of the unknown parameter A4; is important in
determining which component should be deleted in principal components regression. Since
the magnitude of 7; is determined by «; and +/7; the magnitudes of a; are sometimes
crucial to achieve a proper PC estimator. For the simple case, p=2, the problem
related to the PC estimation is delineated in this section,

Consider the orientation of the unknown parameter vector in terms of @ or 8. Let the
squared length of a be fixed as C

a'a=pf'5=C (15)
and, for illustrative purposes, consider the special case when p=2. Then the matrix of
the correlation form of the two regressors is

X X:[ 1 712 ]’

Yo 1
where r,, is the inner product of the x; and x,. Without loss of generality, 7, is assumed
to be positive. The eigenvalues of X'X are 1+7y, and 1-—7,, with the matrix of the
eigenvectors, V, where
[ VVE Uy
1/¥2 —1/42

Assuming also that #,, is close to 1, there exists severe multicollinearity in this simple
MLR model.

The orientations of the unknown parameter vectors in terms of a and B, which satisfy
(15), are described as the circle in Figure 1. The specific @ depicted in the figure may
cause the regular PC estimator, PC(2nd), to be inappropriate in that MSE[PC(2nd)]1>
MSE[PC(1st)] since the absolute value of a, is relatively large compared to that of a;.
Note that PC(1st) and PC(2nd) refer to the principal components estimators resulted
from deleting the first and the second principal component, repectively, However, in
Figure 1, the exact range of the orientations for which the regular PC estimator is
improper, cannot be found.

In order to investigate the performances of the PC estimator, the corresponding orien-
tation in terms of y can be obtained by applying the singular value decomposition. Since

y=A'?a, the orientation of 7y corresponding to a lies on the ellipse y'A7'y=C in Figure
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Figure 1. Specific Orientations, « and

Figure 2. Ellipse with respect to y : ¢< Y,C
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2 Note that the ellipse is associated with the circle in Figure 1 and the dotted lines
represent 7,=+0, j=1,2.
The dotted lines in the figure are based upon the assumption that ¢ is fixed such that
oV 2,C, (16)
where =+ +/2,C are the points of the ellipse at 7,=0. Then, by the condition (12), the
orientations in terms of 7 can be catagorized into three regions summarized in Table 1.
First, when
12"t <y’ (a)
which is described by the chord segments MN and QR in Figure 2, the deletion of z,
improves estimation of & in that MSE[apcznay]<<MSE[aLs]. In other words, from(12),
the usual PC estimator obtained through the deletion of the component associated with
the smallest eigenvalue will outperform the LS estimator in terms of MSE. Note that

ri=A4a®, j=1,2.

Table 1. Condition (12) with respect to y

Condition Region Proper Decision Result
(a) r2<<o<4 MN and QR delete z, MSE[PC(2nd)]<<MSE(LS)
(b) rn<e<rp,; OP and ST delete z, MSE[PC(1st)I<<MSE(LS)
(¢) 71>>0 and r; >0 NO, PQ, RS and TM none smaller M SE(LS)

Secondly, if
77 <o* <y’ (b)
then the PC(2nd) estimator cannot have MSE as small as the LS estimator, The con-
dition(12) requires the deletion of the first PC even though A >4, Thus any orientation
of 7 along the chord segments OP and ST leads to the improvement of the PC(lst)
estimator over the LS estimator,
Finally, at the other chord segments (NO, PQ, RS, and TM), the LS estimator has
smaller MSE than any PC estimator since
7°>0® and r;*>0" (©)
so that deletion of any principal component cannot guarantee smaller MSE, The result
can be expected by the fact that the effect of multicollinearity may be eliminated by a
relatively small ¢?. Note that as ¢% is decreased, the range of the orientations where

PC estimation is preferred over LS estimation is also decreased.
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In fact, only when the true parameter vector, in terms of 7, lies on the limited chord
segment, MN and @R, can the regular PC estimator, PC(2nd), be used to combat the
multicollinearity problem, Therefore, it is essential to examine the orientation of the
parameter vector along the ellipse.

Furthermore, the magnitude of ¢? also affects the performance of the PC estimator.
As long as ¢ is in the interval,

VIC<I< VI an
there is no need to suspect the capability of the PC(2nd) estimation since any orientation
7 satisfies the condition 7,*<{¢* (see Figure 3). In addition, if 12+ 7,2<6® then the
trivial result that the PC estimator is 0 from (12) can be obtained. This case is depicted,
in Figure 3, by the chords, KL and MN. Therefore, for only the orientations along
LM and NK, the PC(2nd) is recommended and for the other orientations along the
ellipse the PC(2) should be used, where the PC(2) refers to the PC estimator resulted
from deleting the last two principal components, It goes without saying that if

vac<o

then the PC estimator should always be 0.

Figure 3. Ellipse with respect to y : v2,C <o<<v1,C
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Thus, the performances of the PC estimators depend on not only the orientation of
the unknown parameter vector but also the magnitude of %

In the next section, the effects of the orientation of the parameter vector and value
of 0% on the performance of the PC estimators are examined and the usefulness of the
unbiased optimal deletion criterion will be seen by simulation studies in terms of the

empirical mean square error.
5. Simulation Studies

It has been observed that different orientations of the parameter vector and different
values of o2 affect the performance of the PC estimation. This fact, demonstrated in section
4, will be thoroughly illustrated in this section by using simulated data for p—4. In the
following simulation results, two experimental factors will be controlled: (1) orientation
of #* will change which g% 8* will be held constant and (2) the value of ¢ will vary.

Note that 8* is the unknown parameter vector for the standardized linear model.
5.1 Generated Data Sets: p—=4

The explanatory variables X, X,, X;, and X, are established in the following way.
Twenty values for X; and X; were independently preselected. And, by using these prese-
lected values, X, and X, are generated as follows:

X:p=4.5+6.1X;+ei, i=1,--, 20,
Xiy=.75—3.75X;5+5.25 X3+ €4, 1=1,-+, 20,
where ¢;, and &;, are independent normal (0, ¢,°) and (0, 0, random numbers, respec-
tively. Note that the values of Xs are generated in terms of the original units,

The values of &, and ¢, are chosen as 2.1 and 1.3 so that the resulting X matrix
along with the standardized X matrix, X*, is given in Table 2, The eigenvalues and
the condition indexes of X* X* is supplied in Table 3.

Instead of choosing the orientations of the unknown parameters in terms of 8, it will
be convenient to choose the orientations in terms of y, where y=A"?a=/A"?V'f* Thus
two different orientations of the parameter vectors in terms of 7, «, 8*, and § are given
in Table 4. Note that the magnitudes of 7; and 7, are so large that the first two
principal components are regarded as important regressors. The first orientation of 7,

denoted by (A), has a relatively large value of 7; and a relatively small value of 7,,”
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Table 2. X and X* Matrices

X X*

10. 00000 63. 52738 25.70000 —104.00751 | —0.29003 ~-0.29396 —0. 09645 . 27104
12. 50000 80. 15732 34.10000 —119.08264 | —0.09564 —0.09572 0. 34031 0. 22098
14. 00000 89. 17675 29.50000 —179.45786 0. 02099 0.01179 0.10113 0.02050
16. 50000 103. 54194 33.20000 —212. 33966 0.21538 . 18303 0.29351 —0. 08869
18. 00000 115. 85583 31.10000 -—271.52204 0. 33201 32982 0.18432 —0.28522
12. 40000 78.74884 20.50000 —189.51461 | —0.10341 —0.11251 —0.36683 —O0.01290
17. 20000 111. 64889 23.00000 —296.90512 26981 27967 —0.23684 —0.36951
15. 90000 105. 32143 25.50000 —260. 82443 0. 16873 20425 —0.10685 —0.24973
17.70000 117.53938 28.00000 —293.10904 0. 30869 0. 34989 0.02314 —0.35690
16. 60000 106. 79316 30.50000 —239. 88858 0. 22316 0.22179 0.15313 —0.18018
11. 00000 72.85071 34.70000 — 90.76078 | —0.21227 —0.18282 0. 37151 0. 31503

0

0

f=1

o O

|
i
|
V
i

e
4

o

12. 50000 85.03747 28.80000 —165.89151 | —0.01788 —0. 03755 . 06473 0. 06555
15. 00000 101. 04635 29.50000 —223.86227 0. 09875 0.15328 .10113  —0.12696

7.50000 49.31779 19.90000 — 81.02018 | —0.48442 —0.46334 —0. 39802 0.34738
10. 30000 64. 45971 24.60000 —111.72797 © —0.26670 —0.28284 -—0.15365 0. 24541
13.50000 83.79756 21.50000 —199.77653 | —0.01788 —0.05233 —0.31483 —0. 04698
16.20000 99. 29425 24.00000 ~245.03484 & 0.19206 0.13240 —0.18484 —0.19727

9. 80000 64. 08022 26.50000 —104.26253 | —0,30558 —0.28737 —0.05486 0.27020
13. 30000 86. 78339 29.00000 —171.19733 | —0.03343 —0.01674 0.07513 0. 04793
13.70000 84.76920 31.50000 —152.40512 | —0.00233 —O0. 04075 0. 20512 0.11033

Table 3. The Eigenvalues and Condition Indexes

Eigenvalues Condition Indexes
2.96075 1. 0000
1. 02801 1.6971
.01112 16. 3173
. 00012 157. 0762

while the elements of the second orientation (B) are ordered as |yy|>7,1> 7> 7],
Thus, the order of |y,] and |74] may cause problems for principal components regression,
The observations of the response variable, for each case, are determined by
Yi=34. 8+ B X1+ 8 Xio + B Xis+ B Xig+ei, i=1, -, 20, (18
where ¢; are independent normal (0,0%) random numbers, The values of ¢ are chosen
as 5 and 10 in order to vary the signal-to-noise ratio. Note that the generating equation

of y, (18), is equivalent to
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Table 4. Two Orientations of Parameter Vectors

(A (B)
r 662. 656 —88.5118
93. 2293 —88. 0519
35.1299 —2.97339
—2.11488 5. 94551
a 385.112 —51.4399
91.9509 — 86.844
333. 203 —28.2022
—192.875 542,225
B* —43.0837 —24. 6925
209.724 351.367
56. 5434 —49, 7242
—505.918 422. 433
B 34.8 34.8
—3. 34998 —1.91997
2.5 4.18844
2.93999 —2.58542
—1.68 1. 40277

y:=(34. 8+ B, X 1+ + LX) + B X ke B* Xi* ey, i=1, 0,20,
since A'=(B,, Xsp 'B*), where §,=34.8 and Xsp=—diag(Sx,, -, Sx,), Sx,;=[3 (Xi—
X5)P2, l
Throughout this section, the treatment combinations will be labeled as (A5), (Al0),
(B5), and (B10). For example, (B5) indicates the data set whose orientation of 7 and

the value of ¢ are based on (B) and 5, respectively.
5.2 Comparisons of PC Estimators with LS Estimator

As a measure of a biased estimator & of 8, in simulation studies, the empirical mean
square error (EMSE) can be used. The EMSE of b is defined as
EMSE() =350 (ba—B)" 19)
F=11-1 50

where &;, is the jth estimated coefficient of 4 in the lth Monte Carlo repetition. Note
that the number of Monte Carlo repetitions is 50 throughout this study.

Furthermore, it is more useful to standardize the EMSE(}) with respect to the true
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variances of the b; 15, since the resulting standardized EMSEs of the LS estimator are
all equal for the four cases [see LEE(1986)]. The standardized EMSE(SEMSE) of § is

carried out as

A (bs1—B)*
SEMSE(6)=3 13 J— 2Lt (20)
i1 500 s
where ;5 15* is the variance of the jth element of &5,
Consider, now, the performances of the various PC estimators through the simulat-
ions, For the usual PC estimators, that is, the PC(4th), PC(2), and PC, obtained by
the t-value criterion with the significance level ¢=0. 01, the results in terms of SEMSE

are shown in Table 5,

Table 5. SEMSE of PC Estimators

PC(4th) PC(2) PC,
(A5) 1.6108 44. 8161 1.6108
(A10) 1.1140 11.1510 7.9674
(B5) 6.3654 5. 2476 5. 2476
(B10) 2.3233 1.3120 1.3120

In order to utilize the unbiased optimal deletion criterion, furthermore, the unbiased
estimates of 7,°, 7, and ¢° are obtained in Table 6. Note that the first two principal
components are out of question and hence the unbiased estimates of 7,% and 7,% are not

considered here. Rewriting (14)
N\
2 rif<st
jeb

the suggested PC estimators for each case are given in the last column of Table 6.

Table 6. Unbiased Estimates of 7,2, j=3,4 and o¢° and the Suggested PC(-)

P Pas N AN
s 7d 78 Frd s? Suggested PC(+)
(A5) 1189.27 5.92 1195.19 24.64 PC(4th)
(1234.11) (4.47) (1238.58)
(A10) 1146.57 5.22 1151.79 98.55 PC(4th)
(B5) 13.80 27.20 41.00 24. 64 PC(3rd)
( 8.84) (35.35) (44.19)
(B10) 20.91 16.90 37.81 98.55 PC(2)

* The true values of 7;?, 7=3,4 are in the parentheses,
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The PC estimators based on the unbiased optimal deletion criterion for cases (A5)
and (Al10) are the usual PC estimators, PC(4th), That for the case (B10) is the PC
estimator resulted from deleting the last two PCs, PC(2). For the case (B5), interest-
ingly, the SEMSE of the suggested PC estimator, PC(3rd), is 4.1252. It is a substantial
improvement over the PC estimators based on the usual deletion criteria, compared with
the values in Table 5.

Thus, the unbiased optimal deletion criterion determines ‘how many’ and ‘which’
principal components to be deleted, For the particular (B5) case, in addition, the new

criterion should be taken in order to use principal components regression properly.

6. Concluding Remarks and Suggestions

In order to use principal components regression for combatting the multicollinearity
problem, it is important to compare the magnitudes of the 7;%s and o® to achieve a proper
principal components estimator which indeed improves the least squares estimator in
MSE. When o2 is in a certain range, there are limited orientations of the parameter
vector for which the regular principal components estimator, which is based on the
eigenvalue criterion, would remedy multicollinearity. The limited values of the para-
meter vector along with the size of ¢ are delineated in Section 4.

Thus, in this paper, a new deletion criterion that complements the weaknesses of the
usual deletion criterion, named the unbiased optimal deletion criterion, has been developed.
It has also been observed by simulated data that the new deletion criterion leads to delete
prcrer principal components for all cases of the simulation. In particular, for the specific
case where the usual criterion never performs well, that is, (B5), the unbiased optimal
deletion criterion rather than the usual one should be recommended. Furthermore, it
also gives the exact number of principal components to be deleted for the cases (A5),
(A10), and (B10). It is noted that, for computing convenience only, the number of
Monte Carlo repetiticns is limited to 50.

The various extensicns of the simulation studies may show the range of the signal-
to-noise ratio for which the least squares estimator outperforms the principal components

estimator even though there exists multicollinearity in the MLR model.
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