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A Newton-Raphson Solution for MA Parameters

of Mixed Autoregressive Moving-Average Process”

B.S. CHOI*

ABSTRACT

Recently a new form of the extended Yule-Walker equations for a mixed autore-
gressive moving-average process of orders p and g has been proposed. It can be used
to obtain p+g+1 parameter values from the first p+q+1 autocovariance terms. The
autoregressive part of the equations is linear and can be easily solved. In contrast the
moving-average part is composed of nonlinear simultaneous equations. Thus some
iterative algorithms are necessary to solve them. The iterative algorithm presented by
Choi(1986) is very simple but its convergence has not been proved yet. In this paper
a Newton-Raphson solution for the moving-average parameters is presented and its
convergence is shown. Also numerical examples illustrate the performance of the alg-

orithm.

1. Introduction

Consider the stationary autoregressive moving-average (ARMA) process of orders p
and g,
gLyy.=a(l)v, ¢))
where B(L)=Bo+BL+++pB:L* a(L) =qot+a L+ +a L Bo=a,=1, L is the backs-
hift operator and {v:} is a sequence of independent and identically distributed random

variables with mean 0 and variance ¢2(>0). The stationarity means that the charac-

* Department of Applied Statistics, Yonsei University Seoul, 120, Korea
+ This work is supported in part by Korea Science and Engineering Foundation under Grant

871-0105-004-1.



2 B.S. CHO1

teristic equation, 8(z)=0, of the autoregressive (AR) part has all the roots outside the
unit circle. The relation between the parameters and the autocovariances is given by
Choi (1986) as follows. If 7: is defined by
ﬁo?‘i+,317’i-1+"°+ﬁi7’o={ a; .if ?':0, .y g, .
0 if i>gq,
where B8,=0 for />p, then the autocovariance function, o (/)=Cov (3, ¥:.:), satisfies
that
Boo (1) + P10 (I —1) ++++ o0 (i —p)
:{ (ot 7@+ 0+ 7)o if =0, ¢, (3)
0 if i>q. (4)
Equations (3) and (4) are called the extended Yule-Walker equations for the mixed
ARMA process. The problem considered in this paper is, given p+¢g-1 autocovariances
a(0),0(1), -, 0(p+q), to solve these equations for p+q+1 parameters fy, -+, 85, ay,
a, and ¢, We can easily obtain 8y, .-+, 8, from the given autocovariances by solving the
simultaneous linear equations (4) with { =q+1,--+,¢+p using an algorithm proposed by
Zohar (1974). Hereafter, we assume that not only {o(/) 3 0=0, -, p+g} but also {3,
.-, B,} are known and devote ourselves to solving the nonlinear equations (3) for a,

»esy g and o.

If the covariance generating function is defined by g(z)zi o)z}, then Equations
l=—o0

(2), (3) and (4) are equivalent to _
B(2)B(zNg(2) =cta(al(z"?), z+0. (3)

If the R.H.S. of (5) is denoted by A(z), then we can show the multiplicity of the

solutions for a,,--+, a, and ¢ through it. If Z1, **+, 2, denote the reciprocals of the roots

of the characteristic equation, a(z)=0, of the moving-average (MA) part, then A(z)
can be written as
A(2) =0T (1—2z:2) (1—2z:27Y).

i=1
If any real value z; is replaced by 1/z;, or if any pair (z;,Z;) of complex conjugate
values are by their reciprocals, then A(z) is unaltered up to the constant ¢, Therefore

q
any of the different forms of a(2) =TI (1—w:z) where (w;, ;) is either (z;, Z.) or (1/z:,

1/2:) results in the same autocovariance function. Consequently the simultaneous system

of the nonlinear equations (3) has at most 2¢ different solution sets for ay,---, @, and ¢.
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To express ¥ in terms only of previous history time series analysts usually impose
the invertibility on the ARMA process, i.e., the equation a(z) =0 has all the roots outside
the unit circle. (See, e.g., Anderson [1971].) Then, there is a unique solution set for
a,, -, a, and ¢ of the simultaneous equations (3).

Choi(1986) proposed an iterative algorithm to obtain the unique solution of the MA
parameters and the innovation variance, which is based on a special property of trian-
gular Toeplitz matrices. Even though it has a very simple form and is easy to progra-
mme, its convergence has not yet proved. The purpose of this paper is to present a
convergent algorithm. The algorithm proposed in Section 2 is simply a Newton-Raphson
solution of the nonlinear equations. Its convergence, which is of second order, will be
shown in Section 3. In Section 4 appropriate sets of initial values that lead to the
invertible solution will be presented. In Section 5 some numerical examples will be

presented to illustrate the usefulness of the algorithm.
2. A Newton-Raphson solution

Let T be a {(g+1) x (p+1) matrix whose (i, j) element is 6(i—j), and let I" be a
(g-+1) X (p-+1) matrix whose (i, j) element is 0 if i1 <j, 7i.;j otherwise. Also, define a
(g+1) % (g+1) Toeplitz matrix I'; whose (i, j) element is 0 if ©>7, 7;.; otherwise. If
8 denotes (Bo, B, +++ B»)', then it is known (Choi [1986]) that (2) and (3) imply that

2B=0'T.T8. (6)
If we let C,=ol,, C=0l and
c:=07i, 1=0, ¢, )
then (6) becomes
C.CB=28. ®

We first solve (8) for ¢q, -+, ¢q and then calculate ey, -, a, and ¢ through (2) and (7).

Let e=(co, €1, Co)' and f(e)=(X —C,C)B. We are going to solve f(¢) =0 by the
Newton-Raphson method. Let 7 be a (g+1) x (p+1) matrix whose (7,s) element is
Cisros if 1<s<i+7 and 1<r<g—i+1, 0 otherwise. Also, let S: be another (g+1) X
(p+1) matrix whose (7,s) element 1S Ci_rgs if 1<r<<q+1 and max(l,7—1) <s<g—i+1,

0 otherwise. If U: is defined by T:+S5S;, it follows that

—g_:—-:—(Ti-}-Si)ﬁ:—Uiﬁ, i=0,- 4. €
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If W is defined by (U,8, -, U.8), and if the superscript (n) means the value at the
n-th iteration, then the Newton-Raphson method gives that
c(n+l):c(n)+ (W(n)) -1 (Z _an)c(n))ﬂ. (10)

A direct calculation shows that

al,=

0 i

ClSl:CqC- (11)

Ma
Ma

1]

i 0

It follows that
We=2C,CB. (12)

Thus the iterative equation (10) can be simplified as
c("+1):—%~ c(n)+ (W(n)) -IZ ﬁ. (13)

It is worth mentioning that Wilson(1969) derived the Newton-Raphson algorithm for
a pure MA process, i.e., a case of p=0. The algorithm is naturally a special case of
(10). Hence, the iterative formula (13) implies that Equation (4) of Wilson’s paper
can be simplified as

g+ :%_ [/ 1S3 + (T(t)) —10*.

3. Convergence of the algorithm

Equation (13) equals
W(n)c(n-(-l)____l_W(n)c(n)_i_Zﬁ. (14)
2

A similar way to derive (12) shows that
Wmen+D — (CwCo+d 4 CotnCn) g
and W™ =9CmCmg,
These equations and Equation (8) imply that (14) equals
(CPRCrLLCPC ™) g= (CC™ +-C,C) B. (15)
We define the error e®=c% —¢; and its related vector and matrices e =¢"—¢,
Em=-Cw_C, EP=C®»—C,. Substracting (C,C™4-CC)B from the both sides of
(15) gives that the R.H.S. becomes E®ME™8 and the L.H.S. becomes that
(€ (C41—C) 4+ (Cg—C) €} B
=(CED L EGHoC) B+ (EPECHD f o Eo0) g
=A(e)e™ V4 A(e™)emtD),
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where A(x) is a (g+1) X (g+1) matrix each element of which is a linear combination
of elements of the vector x= (Xo, X1, ***, %) '+ It follows that
e(n+1)+A(c)—1A(e(n))e(n+1):A(C) -lE;n)E(n)ﬁ. (16)

Let ||x|| denote the norm of a vector x= (X1, *** x.)' defined by max|x:|, and let

Il Ajl be its subordinate norm of a matrix A= (aix) defined by max ‘Z‘ lai|. If da is de-
i k=1

fined by lle|l, then the definition of A(e®) implies that 'there exists a positive cons-
tant #, satisfying [|A(e) |1<hda. It follows that
e D+ A(e) tA(e™) e VN> (L~ Muhedn) dnsa
and
1A (e) TEPE™BI<h, (q-+1)dn(p+1)dall Bl =hsd s
where h,=|lA(c) Y| and hy= (p+1) (g+1) A.llBl. Therefore, Equation (16) implies that
(1—=hhd ) dnnShad (18)
If an initial vector ¢ is chosen so that d, <1/ (hhy+hy), then (18) implies that {d.}
is strictly decreasing and then d.<d, for any 7. Thus, we know that
Ao <had2] (1 —hihody) <(hihat+hy)dy, (19)
or equivalently,
d, <{Unhy+he)do} ¥ (b +hy), 1=1,2, . 20
Since d, is chosen to be less than 1/ (hho+-hs), d. converges to Zero. Equation (19)

shows that the convergence is of second order.
4. Choice of starting values

Equation (20) shows that a sufficient condition for the convergence of Algorithm 13)
is to choose a starting vector ¢« satisfying max|c”—ci| <1/ (hho+hs). Since neither
the true vector ¢ nor Ah,+h; is known, it isn’t possible to find ¢ satisfying the suff-
icient condition. Instead we propose a method to select a starting vector sufficiently
close to the true vector as follows. The definition of 7; in (2) implies that the ARMA
(p, q) process {y:} can be represented by the MA(co) process satisfying

Ms

Ye= oTlUt_z. 21

1
Following Durbin’s method (1959), ie., to use an MA(s) model with a fairly large s

to estimate the parameters, we consider an invertible MA(s) model
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o= ;0 7, (22)

where the parameters 7¢, .., 7% are determined so that Cov (37, ¥) equals o(!) for
{=0,-+, s. Then it is known (see, e.g., Anderson[19717) that ¥ converges to y. in
L* as s tends to infinity. Thus we can choose an integer s so that y{, ..., 7% are as
close to 7, -+, 7, respectively as we wish, We apply Wilson’s algorithm to this suitable

MA(s) process with starting values

=0 () +23 o ()} 12

€= = (BiC -+ -+ Bics), i=1, -, .

It is known that Wilson's algorithm with the starting values has a convergence property
of second order. More precisely the resulting values converge to the true parameter
values satisfying the invertible condition of the MA(s) process. Therefore the final
values of Wilson’s will be suitable as starting values to Algorithm (13). Since the
former is a special case of the latter, we do not need a separate computer program for
the former. However, since s is large, we need a lot of computing time and storage for
inversion of W,

We consider another possible choice of starting values for Algorithm (13), which
needs less computation. Let

= (a(0))"?
€= (Bief2i e+ Bicl?), i=1, 00, q. (23)

These values are simply chosen so that a® (2) =0 has no roots inside the unit circle.
Even if we don’t know whether d, less than 1/(A4,+4;) or not, numerical examples
show that the set of starting values (23) gives the same result as that using Wilson’s
algorithm. When the Gauss-Jordan method is applied to calculate the inverse of a matrix,
the latter needs computing operations {(s-+1)/(g+1)}® times and memory locations
{(s+1)/(¢g+1)}*? times as many as the former. In particular, if the characteristic equa-
tion, 8(2)=0, has a root near the unit circle, then s should be sufficiently large, and
so are the ratios. Furthermore, the larger s is, the larger the total number of iterations

becomes. Thus, it is recommended to use the starting values in (23) rather than the ones

based on Wilson’s algorithm.
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5. Numerical examples

(a) Let p=1, q=2, $5=0.3, ;=—0.7, a=—0.18 and ¢%=1.0. Then the autocova-
riances are ¢(0) =2. 0158241758, o(1)=—1.1247472527, o(2)=0.15742417582, o(3)=—
0.047227252747. Also, Equation (2) gives that 7,=1.0, 7:=—1.0 and 7.=0.12.

The computing result with the starting values in (23) is in Table 1, where

¥—max|c{ -V,

Table 1
n g™ e 7 a¥
0 1.419797231 —. 3000000000 . 0900000000
1 1.246031511 —. 6244565473 . 0855910085 3.5E-1
2 1.102810459 —. 8225054120 . 1025466176 1.3E-1
3 1. 034721385 -, 9362260934 . 1136362117 6.2E-2
4 1.007119446 —. 9865683560 . 1186570911 2.7E-2
5 1. 000443719 —. 9991573065 . 1199157318 6.6E-3
6 1. 000001952 —. 9999962920 . 1199996292 4.4E-4
7 1. 000000000 —.9999999999 . 1200000000 2.0E-6
8 1. 000000000 —1. 000000000 . 1200000000 3.8E-11
9 1. 000000000 —1. 000000000 . 1200000000 1.5E-20

If Wilson's algorithm is applied to the autocovariances with s=19, then after 7 itera-

tions the values are ¢<?=1.000000000, 7¢"=—1.000000000, 75°=0. 1200000000, d*=2. 0E
—6 and satisfy rgax]cﬁ-”—al <1,0E—11, If we let them be the starting values for Alg-
05ig2

orithm (13), then the result is as follows.

Table 2
n O-(n) Tsﬂ) T:u) d::
0 1. 000000000 —1. 000000000 . 1200000000
1 1. 000000000 —1. 000000000 . 1200000000 8.2E-11
2 1. 000000000 —1. 000000000 . 1200000000 1.5E-22

(b) The second example illustrates a case when a root of characteristic equation,

8(z) =0, is near the unit circle. Let p=1, ¢=2, 5£=0.95, &,=—0.2, a,=-0.15 and
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o°=1. Then, 7,=—1.15 and 7,=0. 9425. Also, the autocovariances are a(0) =11. 433333333,
o (1) =—10. 889166667, ¢ (2)=10.194708333, and ¢(3) =—9. 6849729167. With the starting
values specified in (23) Algorithm (13) gives the following result.

Table 3
71 o-(n) T:u) T(zn) d:
5 1.000001879 —1. 149997099 . 9424981743 9.2E-4
6 1. 000000000 —1. 150000000 . 9425000000 1.9E-6
7 1. 000000000 —1. 150000000 . 9425000000 1.9E-12

When we apply Wilson’s algorithm to the autocovariances with $=19, we can find
that d% does not decrease monotonically but oscillates. After 16 iterations the values
are 7;'”=—. 0025145178, 7{'®=. 4897638886, ¢7®=1.318407178 and d*=7.9. Table 4

shows the result when these values are used as the starting values for Algorithm (13).

Table 4
n g ™ rem a*
5 1. 000001038 —1. 149856810 - 9424666852 8.1E-4
6 1. 000000000 —1. 149999710 - 9424999626 1.0OE-6
7 1. 000000000 —1. 150000000 - 9425000000 2.0E-12
8 1. 000000000 —1. 150000000 - 9425000000 7.5E-24

6. Application

Algorithm (13) can be used to obtain estimates of the MA parameters of an ARMA
process through sample autocovariances. To calculate AR parameters of the process we
may use Zohar’s algorithm mentioned before. Although these are not the maximum
likelihood estimates, they will be good starting values for the maximum likelihood esti-

mation.
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