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ABSTRACT

The seasonal pattern and the annual magnitude of the internal (or biochemical) and plant-soil
cycles of phosphorus in adjacent three differcnt herb plant populations—Helianthus tuberosus L.,
Artemisia princeps Pampan and Phalaris arundinacea L.—in an old field of the basin in the Mrt.
Geumoh were investigated. A lot of the phosphorus demand for the three populations was
supplied by the withdrawal from below-ground organ in carly growing period, by the
absorption from soil in mid-growing period and by the withdrawal from stem in later
growing period. But in the A. princeps and P. arundinacea populations, a great- deal of phos-
pborus seemed to be absorbed prior to the first withdrawal. The annual amount of the
phosphorus flowing through the internal cycle was about 59% of the total phosphorus flow on
the organ level in the H. tuberosus population, 41% in the A. princeps population and 32% in
the P. arundinacea population, indicating that the tuber plant had the most developed internal
cycle system. The annual amount of phosphorus which took part in the plant-soil cycle in the
stand of the three populations was in the range of 4.49—5.65 gP m™, corresponding to only
3-8% of the extractable phosphorus contained in the soil of 0-20 cm depth The fact that the H.
tuberosus population is higher in the extent of internal cycle but smaller in the magnitude of
plant-soil cycle and lower in the turnover rate of phosphorus than the other two populations
suggests that the growth of H. tuberosus population may be less dependent on soil phosphorus

availability than those of the other two populations.
INTRODUCTION

Since the Switzer and Nelson’s proposal (1972) of three cycles, such as biochemical cycle
including nutrient redistribution within a stand, biogeochemical cycle between soil, standing
crop and litter subsystems, and geochemical cycle incorporating the relation between input to
and output from an ecosystem, much attention has been paid to the scale and significance of
the biochemical cycle in the nutrition of plant commumties. In the case of phosphorus cycle,

Hirosc (1972) found that 39% of annual demand was supplied by biochemical cycle in a
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Solidago altissima population and Attiwill (1980) confirmed that 46% of it was supplied by the
biochemical cycle in a mature Eucalyptus obliqgua population. Moreover, it has been suggested
that the biochemical cycle acts as an important strategy of increasing the utilization efficiency
of a limiting resource (Westman, 1978; Luxmoore et al., 1981) and an important factor in the
formation of a conservative, efficient and comparatively self-regulated nutrient cycle (Gray,
1983). :

We reported that the annual phosphorus inflows, i.e., annual phosphorus demands, n the
populations of Helianthus tuberosus L., Artemisia princeps Pampan and Phalaris arundinacea L. in
an old field at the basin of the Mt. Geumoh were 1.35, 9.63 and 7.60 gP m™ respectively and
that the H. tuberosus population with the smallest relative growth rate (RGR) among the three
populations was largest in efficiency of phosphorus utility (EPU) among them (Lyu and Song,
1986). In this study, the attention was on seasonal patterns of the phosphorus withdrawal and
annual scales of the biochemical cycles, i.e., internal cycles, and plant-soil cycles of phosphorus

in the three populations.
MATERIALS AND METHODS

Flow of biomass and phosphorus, The data on biomass and phosphorus quantities in the previous
paper(Lyu and Song, 1986) were used for the analysis and determination of the withdrawal,
flow rate and allocation of the matters in the three herb plant populations. When a standing
crop of matter in a whole plant population or an organ is regarded as a matter pool on the
level of the population or organ, the increase or decrcase of the pool will be brought about by
the balance between the inflow and the outflow of the matter, The inflow and outflow on the

organ level represent the sum of the inflow to and outflow from each organ, respectively.
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Fig. 1. Modcl cxplanations of twao successive vertical distributions of biomass and phosphorus in a plant popula-
tion. L and G represent outflow and inflow of matters on the organ level respectively in a time interval, t1
and t2.



December 1987 Lyu & Song : Phosphorus Cycle in Herb Plant Populations 30

These were detcrmined by overlapping two successive vertical distribution diagrams(Hirose,

1971)(Fig. 1). The inflow on the population level represents the net production in biomass and

absorption in phosphorus. The outflow on the population level means the loss of matters by

dcath or shedding. These values were obtained by substracting the withdrawal from the flow

on the organ level.

Riomass withdrawal. The amount of biomass withdrawn from dying leaf in a time inter-

val(Wom) was determined by following equation (Hirose, 1974);

Won=Lovt 2.
I

where Lom represents the olutflow of biomass on the organ level (Fig. 1), lw and dw indicate the

dry weight of live and dcad leaves respectively on the basis of the same leaf area. The ratio of

biomass withdrawal to the standing crop in stem was assumed to be equal to that of lcaf. The

decrease in the biomass of below-ground organ during the first half of the growing period was

assumed to occur mostly by translocation.

Phosphorus withdrawal. The amount of phosphorus withdrawal (Wp) in an organ during a time

interval was determined by following equations;

De=LomXCXT
We=L:—D;

where D, represents the loss of phosphorus by death; Lowm and Ly, the outflows on the organ
level of biomass and phosphorus respectively during a time interval (Fig. 1); C, the mean
content of phosphorus in each organ during a time interval; T, the proportion of phosphorus
content in dead organ to that in the same live onc. The decrease in phosphorus of storage

organ was assumcd to occur by translocation.
RESULTS

Biomass flow and withdrawal. In the H. tuberosus population, the maximum inflow ratc on the
otgan level was 141 gDM m™ wk™ in June (Fig. 2, left). The maximum inflow rate resulted
from the vigorous withdrawal from tuber in early growng period. A vigorous withdrawal
occurred also in stem in late growing period. The maximum inflow rates on the organ level in
the A. princeps and P. arundinacea populations werc 154 and 204 ¢gDM m™ wk™ in July,
respectively. The withdrawal rates in the two populations were much smaller than that in the
H. tuberosus population all through the growng period.

Phosphorus flow and withdrawal. In the F. tuberosus population, two peaks in the phosphorus
inflow rate on the organ level, i.e., 0.71 gP m™ wk™ in June and 0.59gP m™ wk™ in late

growing period, were noticed (Fig. 2, right). The first peak resulted mainly from the vigorous
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Fig. 2. Seasonal changes of flow rates of biomass(left) and phosphorus(right) in three populations, Mt. Geumoh.
Tub, L, S and R represent the matter withdrawals from tuber, leaf, stem and below-ground part, respec-
tively.

phosphorus withdrawal from tuber, while the second peak from the withdrawal from stem.
The seasonal pattern of phosphorus inflow rate in the A. princeps population also showed two
peaks, ie., 0.55 gP m™ wk™ m early spring and 0.51 gP m™ wk™ in June. The first peak
resulted from the abrupt phosphorus absorption from soil just after the soil thaw, and the
second peak from the absorption and withdrawal. Most of the phosphorus withdrawn was
derived mainly from below-ground part in the first half of the growing period, from leaf in
mid-growing period and from stem in the late growing period. The scasonal patterns of
phosphorus inflow and withdrawal rates in the P. arundinacea population were similar to those
of the A. princeps population, showing two peaks in inflow rate, i.e., 0.48 gP m™ wk™ in early

spring and 0.50 gP m™ wk™ in early July.
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Allocation of biomass and phosphorus. The three populations were different in seasonal biomass

allocation patterns. That is, the H. tuberosus population allocated much portion of biomass to
below-ground part at the initial growing time, to above-ground part next and to tuber finally,
while the other two poprlations showed the typical allocation pattern of perennial herb plants,
allocating much portion of biomass to lcaf at the first, to stem next and to below-ground part

finally through the growing period (Fig. 3, left). The seasonal pattern of phosphorus allocation

was similar to that of biomass allocation in three populations cxcept for the allocation of most

of the phosphorus to below-ground part just after the soil thaw in the A. ptinceps and P,

arundinacea populations (Fig. 3, rght).
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Fig. 3. Seasonal changes of biomass and phosphorus allocations to each organ in three populations, Mt. Geumoh.

L, S, R, Tub and F represent leaf, stem, below-ground part, tuber and reproductive organ, respectively.
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On the other hand, the annual phosphorus allocation to below-ground part was 32.5 and

35.8% of the apnual phosphorus inflow respectively in the A. princeps and P. arundinacea

populations, while the value was only 7.6 and 7.5% respectively in the annual biomass

Table 1. Percentages of annual allocation of biomass and phosphorus(P) to each organ in three popula-

tions, Mt. Geumoh

H. tuberosus A. princeps P. arundinacea
Biomass P Biomass p Biomass P

Leaf 31.1 33.8 30.4 30.6 21.2 20.0
Stem 38.2 30.1 58.2 339 70.7 43.8
Root & 6.6 7.0 7.6 32.5 7.5 35.8
Rhizome
Tuber 241 29.1
Reproduc- 3.8 3.0 0.6 0.4
tive organ
Total 100 100 100 100 100 100

allocation (Table 1). The difference between biomass and phosphorus in annual allocation to

below-ground part in the H. tuberosus population was not so much large as that in the A.

princeps and P. arundinacea populations.

Plant-soil cycle and internal cycle.

The amount of annual inflow, outflow, allocation and with-~

drawal of biomass and phosphorus to each organ of the three popuoations were expressed in

cycle schema (Fig. 4). The annual biomass flow on the population level, that is, the amount of

biomass flowed through the population pool all through the growing period was 1302-1349,
1610-1632 and 1633-1693 gDM m™ respectively in the H. tuberosus, A. princeps and P,
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Fig. 4. Annual allocations to each organ, plant-soil ¢ycles and internal cycles of biomass and phosphorus in the

stand of three populations, Mt. Geumoh. The numerals in parentheses and on arrows represent the pool

size and annual matter flows, respectively. The numerals with* represent the pool size of organic matter in

kgC m~? in the 20cm soil depth. The dotted arrows idicate internal cycles. L, leaf; $, stem; R, root and rhi-

zome; Tub, tuber; Rep, reproductive organ; Lit, litter.

arundinacea populations. And the fact that the differences between the inflow and outflow of

biomass were not large indicates that the three populations were in quite stable state in terms

of yearly variation of population pool size. The amount of annual biomass internal cycles in the

H. tuberosus, A. princeps and P. arundinacea populations was 934, 274 and 246 gDM m™,

accounting for 41, 15 and 14% of annual biomass demands, respectively.

-3

On the other hand, the amount of annual phosphorus plant-soil cycles in the H. tuberosus, A.

princeps and P. arundinacea populations was 4.49-4.69, 5.05-5.65 and 4.98-5.15 gP m™, respec-
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tively, which corresponded to only 3-8% of the extractable phosphorus contained in 0-20 em
soil depth. The amount of annual phosphorus internal cycles in the H. tuberosus, A. princeps and
P. arundinacea populations was 6.63, 3.98 and 2.45 gP m™, accounting for 59, 41 and 32% of
annual phosphorus demands, respectively.

DPISCUSSION

e —

The turnover rate of biomass and phosphorus illustrated in Fig. 5 rcpresents thd ratio of the

matter flow rate to the standing crop on the population level. In biomass, the three populations
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Fig. 5. Seasonal changes of turnover rate of biomass and phosphorus in threc populations, Mt. Geumoh.

were similar to cach other in the seasonal pattern of turnover rate, but different in the
maximum turnover rate of inflow, showing 12.8, 15.2 and 17.0% wk™ in the populations of
H. tuberosus, A. princeps and P. arundinacea, respectively.

In contrast to the case of biomass, the three populations were different in the seasonal pattern
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of turnover rate of phosphorus, showing a bell shape in the turnover rate of inflow in the H.
tuberosus population and large turnover rates of both inflow and outflow in early spring in the
other two populations. The maximum turnover rate of inflow in the H. tuberosus population
was 8.0% wk ™' in August, much smaller than those in the A. princeps(23.1% wk™) and P.
arundinacea(20.7% wk™") populations.

On the other hand, the turnover rate of phosphorus inflow was smaller than that of biomass
inflow during the mid-growing period in the three populations. Bur the turnover rates of
phosphorus in- and outflows in early growing period were much larger than those of biomass
in the A. princeps and P. arundinacea populations. Therefore, we could assume that the phos-
phorus activity of the three populations was lower than the biomass activity in the population
metabolism during the mid-growing period, but the reverse was true in early spring in the A.
princeps and P. arundinacea populations.

Several rescarchers have suggested that allocation strategies are species-specific (Katherine et
al. 1979) and the plant with the greatest growth rate allocates the largest proportion of
photosynthetically fixed carbon to additional photosynthetic tissues (Mooney, 1972; johnson
and Tieszen, 1976; Tieszen and Detling, 1983). But contrary to these suggestions, the P.
arundinacea population with the largest RGR among the three populations allocated only 21.2%
of the biomass inflow to photosynthetic organ all through the growing period, while the H.
tuberosus population with the smallest RGR allocated 31% of biomass inflow to the organ (Lyu
and Song, 1986) (Table 1). Thercfore, it is assumed that the difference in growth rate is
dependent on the photosynthetic capacity of leaf rather than on the allocation strategy.

The significance of the internal cycle, i.e., withdrawal, in the aspect of adaptation to nutrient
stress is not clear yect. Several researchers have suggested that plants use nutrients more
effectively by developing their nutrient internal cycle systems (Luxmoore et al., 1981), and that
the nutrient withdrawal from leaf decreascd with increasc of soil nutrient availability (Stachurs-
ki and Zimka, 1975; Tumer, 1977; Shaver and Melillo, 1984). But the views of the others were
contrary to the suggestions (Ostman and Weaver, 1982). Moreover, Chapin and Kedrowski
(1983) found that the extent of phosphorus recovery from leaves was not significantly corre-
lated with phosphorus status, suggesting a high extent of recovery was not an important
adaptation to nutrient stress. However, the extent of internal cycle of phosphorus in ;he three
populations tended to increase as the phosphorus absorption was inhibited (Lyu, 1985). In
addition to this, the three populations developed in the stand of similar soil phosphorus
availability werc considerably different in the extent of intemal cycle of phosphorus (Fig.4).
These results suggest that the internal cycle contributes to the adaptation of plant having
nutrient stress by reinforcing the cycle to some extent, though the cycle may be practically
species— or life form specific.

The three populations were much different in the seasonal pattern of the ratio of withdrawal
to inflow of phosphorus (Fig. 6). A great portion of phosphorus supplied for the initial growth

of cach organ was derived from tuber in the H. tuberosus population, while a great portion of it
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