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A Study on the Optimal State Estimation of a Dynamic
System with an Unknown Input
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1. Introduction
The state estimation problem for systems
with finds
wide applications in target tracking systems

unknown maneuvering inputs
and control systems for plants with large

biased nocises. In target tracking systems
such as air or sea traffic control, weapons
systems, space aircrafts, and range ships,
a continuous tracking of the object may be
reliable

desired. In order to provide the

knowlege about the targets, the input of
the system should be estimated.

Many different tracking filters such as the
Kalman filter, a-8 filter, the Wiener filter

and a simple extrapolator have been deve-
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loped since Kalman first introduced the idea
of the recursive filtering in the early 1960°s
and there have been many advances in the
development of sophisticated digital filter-
ing algorithms for tracking airborne targets.
Earlier work on the maneuvering target
tracking problem includes Singer’s general-
ized tracking model.® The generalizgd mo-
del tracks a maneuvering target fairly well
provided the so-called “maneuver paramet-
ers” are appropriately chosen, but if the
target is not maneuvering, the tracker de-
grades in performance compared to the tra-
cker based on a constant-velocity model.
Mcauray and Delinger® have shown that
there are significant improvements in the
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tracking capability when using a maneuver-
ing detector in two parallel models. Thorp'
showed that a weighted combination of two
Kalman filters gives good estimates in res-
ponse to a detected maneuver. Moose et
al.® combined the generalized model of
Singer with the adaptive Semi-Markov ma-
neuver model. Another technique, described
by Chan et al.®, uses a least square esti-
mator to estimate a target’s acceleration
input and updates the output of the baseline
tracker, i.e., the predicted estimate, by
the input estimate if the detection is decla-
red.

In this paper a maneuvering target prob-
lem is implemented by incorporating the
input estimator with an update of the filte-
red estimate to provide some improvement
in position accuracy. Measurements of tar-
get position are made in sensor coordinates
and then filtering is performed in the same
frame. We continue to use the constant-
velocity, straight-line tracker for estimat-
ing positions. When a bias develops in the
residual sequence due to the target deviat-
ion from the assumed motion, updating of
the filtered estimate is performed to rcmove
the bias. Whenever the estimate is updated,
the error covariance increases. So, in order
of the
estimate while the target doesn’t maneuver,

to guard against unexpected update

the likelihood ratio test is used to monitor

the occurrence of maneuver at each time.

2. Modeling

A plot of the target and sensor geometry
is shown in Fig.1.
The selection of spherical coordinates(r,b,¢)
rather than Cartesian coordinates(x, y,2) for
our target and sensor modeling is due to

the fact that the measurement error covar-

Fig. 1. Target geometry at time ti © &, bz and e
denote range, bearing, and elevation, re-
spectively. The sensor is assumed at the
origin.

iance becomes diagenal. The true target

motion is a nonlinear coupled differenital

cquation in the range, bearing, and elevat-
ion variables but the approximation of tar-
get motion by a linear system can e found.

An approximate spherical dynamic® of the

target can be rcpresented in the matrix
form as
Xo1=A4X.+BU+GW,, €D
where
(7’/{ | 1T0000,
e (010 000
X, =| b AK=.001T00
by 000100
e 0000 1T
€. lp0000 1
. T2/2 0 0 100,
T 0 0 100!
Bo=| 0 T¥2d 0 | Gi= 010
0 T/ds 0 ; 010,
| 0 0 Tody 001
0 0 T/d: : 001

and

X, =state vector at time Z.

A, =state transition matrix

U, =[u. k), us(k), w,(R)]T, deterministic
input vector

W, = [2w0,(k),w,(R), w.(k)]", noise on the state

T =sampling period

dl = f,(/,‘COS(é,\-/,{)
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dy=Fy. with 7., and €., provided by the
filtered estimate X./..

The observation equation can be written
as
Zeiy =Hx+1XK+1+Vx+1y
where
100000
H = OOIOOOJ 2
000010

Z.={z,(k), z,(k), z.(k)]T, measurement
at time £,

V.=[v,(B), v,(B), v.(k)]T, measurement
noise.

{W.} and{V.) are assumed as independent

zZero mean, white noises with
E{W.W.T} =Q.ben
E{V.V.T} =R.5.,
E{W.V,7} =0

€Y
Y,

for all £,2=0,1, -, where &, is the Krone-

cker delta. It is further assumed that the

initial state is independent of the two noises.

3. Kalman Filter Equations

By dropping the time indices of the con-
stant matrices 4., G,, and H, for conveni-
ence, the Kalman filter equations are given
by

Nevrenr=X g F Keot[Zeor—HX 1]

(5
Xene=AX, .+ BU, ®
Kes1=Pei1 JH'[HP, 3, HT + R, 4]
Pei1ye=AP. AT +GQ.GT
Pesjesi=[I—K.1H]Pess,.. )

In order to start the recursive filtering
operation, the Kalman filter equations sh-
ould be initialized. Assuming that after the
Z; and Z,,

are received, the optimum state vector X/

first two measurements, i.e.,

can be initialized as in (8)

(63)

145

oy (2
2/2 ., T
Fasm [Z(rgi) z2,(1>])/
“~ 2 Zp
Xz/zz 52/3 e [zb(Z)——zb(l)]/T (8)
272
e z2.(2)
2/
52/2 ! [ze(Z)_Ze(l)]/T

The corresponding covariance of the crrors
in the optimum estimate, as shown in Ap-
pendix A in detail, is

Py 2 =51R1S17 + 82 R.S07,

where
[' 0 0 0. 1 0 0
'1/T0 0 ) YT 0 0
Sl~‘ 0 0 0 Sy = 0 1 0
0 1/T 0 0 1/T 0
0 0 0 0 0 1
0 0 /T 0 01T

and Ri, R» are obtained from(4).

Now U, is also unknown but will be est-
imated in the sequel. If the target not
mancuvering, the target motion can be well

is

the maneuvering
that

modeled by simplifying
model, i.e., U,=0 in(1). The filter
uses the simplified model is called the Sim-
plified Kalman Filter(SKF). The filtered
estimate .)?K+1/x+1 can be expressed by using
_?,;/,c and Z/c+1:
Rivvenn=AX et BU K[ Ze—H
(AX,,+B.UD]
=D,c+1A1\7K/,. +Ker1Zes1+ DeaBU.
€D
where Dyy1=[1—K,1H].
Using the similiar idea to the innovations
process, 2’ a sequence is defined by use of
the filtered estimate

Z.=Z.~HX .. (10)
This residual sequence {Z} has the important
properties®:® that it is a zero mean white
Gaussian noise if the initial state and the
two noises are Gaussian. Its covariance
becomes

E{ZZT}Y=HP./.H +R. = w,. $5))
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4. Estimator of the Input®

As shown in the previous section, the
Kalman filter equation requires an U,, which
is unknown, but should be estimated. When
U.,=0 in(9), we denote the cstimate of the
SKF by X.,. Supposc that prior to time ¢,
no maneuvers occur such that N, =X,.
and the target now undergoes a maneuver
with a sequence of Ueo Uginyoes

Ucin-1,. The filter(9), which is

linear, will continuc to give, at times foi1,

inputs
Kalman

Fiyas -y beans the estimates:
X’H 1eel =Db-+1AX~/A- +Ke1Zey1+ D 1B.U,
=XA~+1/~+1+D/:+1BKUM
‘,\‘14 w 2=D/:»“.ZA(DA‘-}»IA}:VA‘/;:"FKM+IZA+1+D/.‘+l
BUD 4 Koot Dyi2Bo iU
=X, 00204 Do AD 1B U. 4 Dyss
B, U..1
S o= Finn w3 D es D
j=0 0
Bu‘r:—ﬂ—j[//vxw‘n—-z—-j]‘i’D/c-}ﬂBK-(»n—lLTh'm:—l (12
Equation(12) gives us an insight that the
bias developed due to target mancuvers will
be removed by an addition of & correction
term to the estimate of the SKI'. Now we
make one approximation to cstimate the
unknown

deterministic input. The target
moves under a constant acceleration, i.e.,

Uerw=0 for n=0,1.---,m—1. Even though
U... arc not constant over the interval, the
estimator will give the best constant cstim-
ate for the different inputs in the least sq-

uare sense. Equation(12) can be rewritten

as
~ — n—-2 i
Novwmin=Xewwint { > [:lI(DA".Lﬂ—i‘Ll)DA'-FH—
3=0i=0
1—_;BA-T,,—2—]']’lLDHnB/.—,n—l}U- (13>
Let

7-.‘—in:Zx+‘n'—HX~ [ R ] (14)
and from(10)

(Y

~

Zx+n: x+n_H)?lc+7:,’/c+n; (15)
then from (13), (14), and (15
—;Z}‘}”:H(‘,X\'K‘:ﬂ,,KJ‘"ﬂHXVIJj7{"A~'y;\[ - Z;;x
n—2 1 -
=H|'S [I(Dsipi DD, 3Brsnma-i]

=0 i=0

+DyynBeint | Ut Zoan (16)
The matrix form of(16) for n=1,2, -, 7,
namely for moving data window #1, is given
by
Y=FU-e, am
where

Z" +1 )
'),': Z'A‘+2 s
Zosn)
) HDK—%IBK
H(Dy.:AD, 1B, DeieBoyt)

me2 |
H ST Dy i AVD, i1 iBrimos 14
oo
DA, ,,B,‘;m—-l}

(7
[ Lrs1
! sz !
ZK+m J
Y and e arc both 3mx1 vectors and F is a
3m > 3 matrix. Since R, is diagoral for all
time, the 3m» 3m covariance matrix for e

is found to be the diagonal matrix M as

{ Wizt ¢ |

1 [OFES) \
M=FE{ee™)} -’—i . \ (18)

L0 @i

The unbiased least square estimatc® M of

U is

O=(FTMF)-"\(FTM1Y) a9
and its error covariance is
L=(FTM-1F)™ (20)
As long as detection occurts, the estimate
of the tracker is updated by the optimum
input cstimate U through
Kovniin=Xesmimt Crinls e



A Study on the Optimal State Estimation of a Dynamic System with an Unknown Input 147

where
m—2 F
Cetm =,~Z:‘|0 ‘I;:I;I(Dx«i-m—iA)D~‘+m—1—i
Biym-g-j] 4+ DegmBiim-1
and Xeim/eim is the updated estimate of X, .
The brief configuration of the input esti-
mator is shown in Fig. 2.

f T
Zum 3 Dimensignal Riompiom s, Rhmiin
SKF +
C.
Y [F IM

Detector
Threshold z

Least Square

Input Estimator

Fig. 2. Input estimator at fp.,.

As we expect, the correction through the
equation(21) will not only remove the bias
developed in Xeimein but also increase the
covariance of estimation errors. So, the
update of the estimate should be performed
when maneuvers are detected. While the
target doesn’t maneuver, nonzero U is due
to the effects of the two noises. Such small
U/ should be ignored. Using the results obt-
ained in the Appendix B, the following co-
variance matrix with the positive definite
CeinlCT, term is obtained :

= =

E{(XK—{»M_XK+M//¢+M) (‘X’K+m—XN+mr"”+’”)T}
=Peimrcimt CogmLClin. (22)

5. Detection of the Maneuver

Detection of a target requires the choice
of a threshold and a moving data window.
These quantities are chosen by considering
tradeoffs among the probability of false
alarm Pp, the probability of detection P,
savings of computation time, and accuracy
of the least square estimate. Now we ass-

ume that all the statistics related to our

detection problem are Gaussian. As shown
in the previous section, if the detector cor-
rectly detects the maneuver, the estimate
of the SKF is updated by the input estimate
U. Our detection scheme is that the norm
of U, D], is first found and the optimum
test for the corresponding component of ||U|]
The idea behind

scheme is that if [|0) is small, the actual

is made. this detection
U is not only small but aslo Z. is small.
Let the subscript x denote vectors or scalars
correspondiag to [|0|l. Surely, x will repr-
esent one of the following: r(ange), b(eari-
ng or e(levation). Detection of the bias at
time f.» based on the multiple observation
reduces to the following hypothesis test:
23>
H,: maneuver occurs: #.=(Z7.):—(C.U).
eLy!
where U, is the optimum estimate of U at

H,: no maneuver occurs: 7.=(Z.):

for k=q+1,--,q+m

t.. From the above expressions, r, e, and
v are defined as

{ Tqt1 | “'Cq+1l,{:q+1
r= 7q_+2 K c= — q+2L"q+2 ’
o : HEN
Vgtm / b Cq+qu+m x
and _
Lot \
U= Lotz |
| T
T
Zq+m Ix

It has
been known that the measurement error co-

which are all mx 1 vactors. always
variance R. is uncoupled. One valid assu-
mption can be made that R.=R for all time.
If we suppose that the target is in a well-
defined track long enough before any man-
euver occurs so that the steady state value
of P, can be chosen to compute w, in (11),
then we might take, to a good approximat-
ion, the m xm covariance matrix of v as
W, 0 )
|

=w. (25)

0 W, x
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Then the likelihood ratio and likelihood ratio

test are
L{r)=EXP[-1/2(r—e)Tw " (r—c) +

1/2r7w~1r] (26)
and
H,
>
Ly — oy, 2n
<
H,
repestively and where N\ is the threshold of

the test, Taking logarithms on the both
sides of (26), (27) and substituting (25)
into (27), equation (27) can be written

H
cTow-lr Inv+1/2¢7wc. (28)
<
H,
If a normalized scalar sufficient statistic is
defined as
AW =cTo r/(cTw-te)2, (29)
the likelihood ratio test thus becomes
H
AG)  Inn(Tole) Vi 1/2(cT 0w )R
A =2, (30)

The detection operation therefore consists
in determing A(r) and comparing it with
the threshold Z,. If A(r) exceed Zr, lt is
decided that H; is the true hypothesis: ot~
herwise, it is decided that H,. We now can
obtain the two expressions about Pr and P,
from the conditional densities of the suffic-
ient statistic(29) conditioned upon the hyp-
othesis Ho and Hi:

Pe={_falu Al HYdA =erl[~Z;] (3D

Po=1={" falu,(AIH)dA
=1—erf[Zr— (cTw 1c)/?] (32)
In using the Neyman-Pearson criterion!®»
subject to the constraint
Pr=q, (33
the threshold Zr and the probability of det-

ection Pp can be obtained from (31), (32),
and (33). However, it should be noted that
the P, depends not only upon the threshold
Zy but also ¢, i.e., U, so that P, will inc-
rease with increases in U,. Thus, this me-
ans that we need to specify the lower bou-
nd of Pp by using the minimum U, that
must be detected because the computed Pp
for the given value « is exact only for one
If any U, greater than
(Udmin is observed, it will give a P, higher

sample period.

than the lower bound. So, the steady-state
value of P, and K, are used since the est-
imation and detection is needed most when
the gain of the SKF is small.

It has been mentioned earlier that the
number 7 is a design parameter of the de-
tector and estimator. Essentially, the m
most recent residuals are examined to det-
ermine whether they differ significantly
from the statistical description of their

values that assumes no maneuvers. The

number # greater than one will not only
increase the accuracy of the input estimate
but also prevent failure declarations due to
a single unacceptable measurement. On the
other hand, it is inappropriate to use a la-
rge number # since this will decrease the
sensitivity to manenver occurrence as time
progresses, along with an increase in the
computation time. Hence, we might choose
m=15 as the reasonable number of data po-

ints in the detection of a maneuyer3)»4):5),10)

6. Simulation and Results

The tracking scheme presented was imp-
lemented on a VAX/VMS computer using
simulated data. For purposes of comparison,
the estimate of the SKF without the mane-

uver detector was implemend in addition to

(66)
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that of the Kalman filter described in sect-
ion 4, called the Modified Kalman Filter
(MKF). Target trajectories generated in
sensor coordinates are shown in Fig.3 thr-
ough Fig.5. The

used:

following statistics are
R=diag(s?, %, o)
where o,=0.0183km and os=0.=0. 003rad
Q =diag(o?, a2, 02)
where o,=0.183m and ss=0.=0.03 mrad

T=2 sec
90.8
~ 0O-- true
X -- estimated by SKF
O-~ estimated by MKF
82.9
£ 74.8
T
% -
c
q
&
66.9
58.8—
50.9 T T } T T T T
8.2 60.9 129.0 189.9 249.9 308.9
Time( sec }

Fig. 3. Tracker Performance in range coordinate.

1.4
- ~— tr
D—- es\éimated by SKF
6¢— estimated by MKF
1.2
]
® 1.8
) 4
€
P
3
2 8.8 -T
8.6 —
2.4 T T T T T T T T

120.2 182.9

Time( sec )

240.9 308.9

Fig. 4. Tracker performance in bearing coordinate.

and the simulated scenario is as follows.

The target initially flying at 0.1lkm/sec
in speed is on a constant course for 112
seconds. At time f=112sec it begins to
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8.7 —
- 0-- true
X -~ estimated by SKF
O-- estimated 'by MKF
2.62 —
o
2 ]
3
£ 8.5¢ —
s
z
s 4
H
o
0.46 —
8.38 —|
0.39 T T T T T T T 7
8.2 60.8 128.8 188.9 248.9 309.2

(67)

Time{ sec )

Fig. 5. Tracker performance in elevation coordin-
ate.

maneuver with acceleration +0.02

km/sec?, at t=120sec commences a fast turn,

input

and at {=126 sec completes its maneuvers.
The target keeps a straightline track at
0. 38km/sec in speed until it again starts its
maneuvers with -0.02km/sec? at £ =232 sec,
making another fast turn at {=240sec, and
finally completing its maneuvers at £=246
sec.

For our experiment, the probability of
false alarm, Pr, was given by Pr=2x10-%
which led to Zr=2.87. The filter was near
steady state at f=64sec after the SKF was
first put into operation.

In Fig. 3 through Fig.5, we have shown
the position estimates of the MKF and the
SKF. The results shown in Fig.3 through
Fig.5 show the MKF’s
performance.

superior tracking
In order to give a good comparision, we

computed the sum square residual errors
which are the sum square of the differences
between the true and estimated values.

Table 1 gives the sum square residual err-
ors. It is clear that the residual errors are
quite small, especially for the MKF and a

small difference as shown indicates the sat-
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Table 1. Sum square residual errors between
the true aud estimated values.

SKF MKF
Range 0.726914 x 162 0. 262592 3 101
Bearing 0.204657 > 10~ 0.964886 x 1672
Elevation 0.415042 x 1072 0. 127342 % 1073
isfactory performance of the MEKF. The
next simulation, described by Fig. 6 through
TFig.8, shows the rms error in the MKF

position estimate. It becomes apparent that
during dectecting maneuvers the rms error
increases bhut decreases

during constant-

speed, straight-line flight because the filter

s.ruz-ca—I—
| RELY

[Lp—

4.B00E-2 ]

9.8XE-02—

RANGE (KM

2. 400E-0R—]

ERROR,

WAL

\ob.000 " ztg,ooa '

TIME(SEC)
Fig. 6. rms error in range coordinate.

RMS

0.0XE- 00 .
000

hoon | x| 30t

8, C0E-0a—

KEY :

o - oY e

8, 400E~-0o—|

4, 00E-09

BEARING(RAD?

3. 200F -8 —|

|.oE-03—]

RMS ERROR,

0.00FE
wbooa

oo

TIME(SEC)
rms error in bearing coordinate.

000 T hooo | whow | 300

Fig. 7.

000

000

(68)

8.0XE-03-

. ACE-09—

REDD

o

FEY

<o

4. 60 09~

9. 200K -]

1.5006-0a—]

RMS ERRCR, ELEVETIONT

0.0k v
1000

b | Do

14:.000 " ZAL.W) T

. TIME(SEC)
Fig. 8. rms error in elevation coordinate.

30

is settled by the dectector. This simulation
also shows that the rms estimation errors

are kept below the inherent measurcment
errors. This means that the MKT is able to

maintain track with good tracking accuracy.

7. Conclusions

In this paper we have presented a track-

ing scheme which has given a good estim-
ate of a target position in three dimensional
space. This tracking scheme gives two ad-
vantages in addition to the several advant-
ages which the scheme suggested by Chan
et al. does:
First, by incorporating the least square input
estimator and a detector, our baselinc tra-
cker produces a filtered estimate instead of
a predicted estimate to ensure increased
accuracy and the filtered estimate is updated
when maneuvers are detected. Second, a
detector based on multiple observation resi-
duals arec used to detect maneuvers to avoid
manetver declarations due to a single una-
cceptable observation.

Simulations show that the tracking sche-

me presented here can give a realistic sol-
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ution to tracking problems for maneuvering
or nonmaneuvering targets. In particular,
if a typical target trajectories are known in
practical applications, we can recommend
reasonable choices of the threshold to imp-
rove the overall performance.

Appendix A

Initialization of the optimum state vector
and the corresponding covariance of a trac-
king filter may be often taken while the
mancuvers of the target are not well known,
Therefore, we start the initialization under
assumption of constant velocity, straight-line
flight and with approximate equations(A-1)
which provide satisfactory results for the
majority of applications

P~ (ra—r)/T
b= (by—b1)/T

és~(ez—e))/T,

(A-1D

Equation(8) can be rewritten as

Fara=¥2+0,(2)
Foa=r2+[v,(2)—0,(1D1/T
base=ba+vs(2)
bae=by+[05(D—vs(1D/T
83,2 =03+ 1.(2)
éapp=éa+[v.(2)—v.(1DIT.
Expression in the matrix form of (A-2)

(A-2)

becomes

)(2 - )25/2 = 511/71 — Ssz,

00 0 (100
‘T 0 0 | 1T 0 0

Si=l 0 0 0 (andSe=| 0 1 0
)Ol/TO‘ 0 1/T 0
{0 0 0 001
L0 0 1T 0 0 YT

Hence,

Pop=E{(Xo~Xo2) (Xa—X22)7)
=SiR.ST+S: Ry ST.

(69

Appendix B

The least square estimate U is unbiased
because e is also a zero mean, white sequ-
in both (21)

and (13) with the time index change, we get

ence. Taking the expectation

E{)?"‘*'"‘/K'fm} =E{)?Af+m/x+m} +C,¢+,,,E{U}
=E{Xx+m/x+m} +C/c+mE{U}
=E{Xh‘+m/»c+m}-

Next we derive the error covariance in (22).
From (13) and (21),

KXevmictm= )?x+m/x+m +Cen(T~TD.

From (17), (19), and (20), we see that
U—U=LF"M-e.

Then,

Xetn— )?/H-m//r-(-m =(Xiim— )?K+m/x+m> —Ciim
LFTM-1r,

Hence,

E{(Xetn—Xewmserm) (Xern—Kermswsn)T)
=Piim+CopnLFTM-1E{ee”} (C,. . LFT M-1)T

=Lx4m + CK+mLC£+m-
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