NOTES ON THE PSEUDO-COMPLETE ALGEBRA

An Hyun Kim

1. Introduction

In [5], Rickart proved that, when F is a Hermitian functional on the Banach *-algebra A, in order for F to be representable, it is necessary and sufficient that

- (i) F is bounded,
- (ii) $|F(x)|^2 \leq \mu F(x^*x)$, $x \in A$

where μ is a positive real constant independent of x. In this note, conditions for a functional to be admissible on a locally convex *-algebra are defined and sufficient conditions for a functional F to be representable are also given in Theorem 4.2.

2. Preliminaries

DEFINITION 2.1. By a locally convex algebra A we shall mean an algebra A over the complex field C, equipped with a topology τ such that

- (i) $(A;\tau)$ is a Hausdorff locally convex topological vector space,
 - (ii) multiplication is separately continuous.

A will be called a locally convex *-algebra if A has a continuous involution.

DEFINITION 2.2. Let A be a locally convex algebra. An element x of A is said to be bounded if, for some nonzero complex number λ , the set $\{(\lambda x)^n : n \in N\}$ is a bounded subset of A.

The set of all bounded elements of A will be denoted by A_0 .

NOTATION. By B_1 we denote the collection of all subsets B of A such that

- (i) B is convex and idempotent,
- (ii) B is bounded and closed.

If $B \in B_1$, then A(B) will denote the subalgebra of A generated by B, i.e., $A(B) = \{\lambda x : \lambda \in C \text{ and } x \in B\}$, and the equation $||\dot{x}||_B = \inf \{\lambda > 0 : x \in \lambda B\}$ defines a norm which makes A(B) a normed algebra.

DEFINITION 2.3. The locally convex algebra A is called pseudo-complete if each of the normed algebras A(B) is a Banach algebra.

If A is a locally convex algebra and $x \in A$, we define the radius of boundedness of x by

 $\beta(x) = \inf \left[\lambda > 0 : \left\{ (\lambda^{-1}x)^n : n \in \mathbb{N} \right\} \text{ is bounded} \right]$ with the usual convention that $\inf \phi = \infty$.

The following simple facts about $\beta(x)$ are obvious:

- 1°. $\beta(x) \ge 0$ and $\beta(\lambda x) = |\lambda| \beta(x)$ where $\lambda \in C$ and $0 \cdot \infty = 0$.
- 2°. $\beta(x) < \infty$ iff $x \in A_{\mathfrak{g}}$.
- 3°. In particular, if A is pseudo-complete, then $\beta(x)$ equals to the spectral radius of x [I].

DEFINITION 2.4. Let A be a locally convex *-algebra, and let F be a linear functional on A. If $F(x^*) = (F(x))^-$ for all x in A, then F will be called Hermitian. If $F(x^*x) \ge 0$ for all x in A, then F will be called a positive functional.

LEMMA 2.5. Let A be a pseudo-complete locally convex *-algebra and let x_0 be any element of A such that $\beta(x_0)$ <1. Then there exists an element y_0 of A such that $2y_0 - y_0^2 = x_0$. In addition if x_0 is Hermitian, so is y_0 .

PROOF. Consider the function f defined in terms of the binomial series as follows:

$$f(z) = -\sum_{n=1}^{\infty} {1/2 \choose n} (-z)^n.$$

Then f is well-defined and $2f(z) - [f(z)]^2 = z$ for all $|z| \le 1$. Now consider the vector valued function $-\sum_{n=1}^{\infty} {1/2 \choose n} (-x_0)^n$.

We show that this series converges. Let $\epsilon > 0$. Since $\beta(x_0) < 1$, there exists a $B \in B_1$ by [1] such that $x_0 \in A(B)$ and $||x_0||_B < 1$. Since f converges for $|z| \le 1$, there exists an n_0 such that for $p, q > n_0$

$$\left\|\sum_{n=p}^{q-1} (\frac{1/2}{n}) (-x_0)^n\right\|_{\mathcal{B}} < \varepsilon.$$

Since A(B) is complete, we have that vector valued series converges to an element y_0 of A(B) such that $2y_0 - y_0^2 = x_0$.

THEOREM 2.6. Let A be a pseudo-complete locally convex *-algebra and let F be any positive functional on A. Then

 $|F(u^*hu)| < \beta(h)F(u^*u)$ for all $u \in A$ and h Hermitian.

PROOF. By Lemma 2.5 and [5, Theorem 4.5.2], the above theorem is obvious.

Let F be a positive functional on A and define

 $L_F = \{x \in A: F(y*x) = 0 \text{ for all } y \text{ in } A\}.$

Then L_F is a left ideal of A([3, p.288]). Now we define $X_F = A/L_F$ and denote $x + L_F$ by \bar{x} .

DEFINITION 2.7. A positive linear functional F which satisfies the following conditions will be called admissible:

- (1) sup $\{F(x*a*ax)/F(x*x):x\in A\}<\infty$ for all $a\in A$.
- (2) For each $x \in A$, there is a $x_0 \in A_0$ such that $\bar{x} = \bar{x}_0$.

COROLLARY 2.8. If A is a pseudo-complete locally convex *-algebra such that $A=A_0$, then any positive functional is admissible.

PROOF. By Theorem 2.6 and 2°.

 $\{F(x^*a^*ax): x\in A=A_0\} \le \beta(a^*a) < \infty \text{ for all } a\in A.$ Since $A=A_0$ for each $x\in A$, there exists a $x_0(=x)\in A_0$ such that $\bar{x}=\bar{x}_0$.

3. Topologically Cyclic Representation

Let A be a *-algebra over the complex field C and X a vector space over C. A *-homomorphism $A \rightarrow L(X)$ is called a *-representation of A on X, where L(X) is an algebra of all linear transformations of X into itself.

LEMMA 3.1. Let A be a locally convex *-algebra and let F be an admissible positive functional on A. If a, $b \in A$, then $(a+b)_0 = (\bar{a}_0 + \bar{b}_0)$.

THEOREM 3.2. Let F be an admissible positive Hermitian functional on the commutative locally convex *-algebra A. Then there exists a representation $a \rightarrow T_a$ of A on a Hilbert space H such that $(T_a)^* = T_a^*$ for all $a \in A_0$.

PROOF. Since A is commutative, L_F is a two-sided ideal and hence X_F is an algebra. Let $\bar{x} = x + L_F$ and define a scalar product in X_F by $(\bar{x}, \bar{y}) = F(y*x)$, for $x, y \in A$. The completion of X_F with respect to the inner product will be called H, and then H is a Hilbert space.

Let \bar{x}_0 be a fixed element of X_F . Since F is admissible, we may assume that $x_0 \in A_0$. Let $\bar{z} \in H$ and assume that $\bar{z}_n \rightarrow \bar{z}$ with $\bar{z}_n \in X_F$.

Then

$$\begin{split} ||\bar{x}_0\bar{z}_n - \bar{x}_0\bar{z}_m||^2 &= (\bar{x}_0\bar{z}_n - \bar{x}_0\bar{z}_m, \ \bar{x}_0\bar{z}_n - \bar{x}_0\bar{z}_m) \\ &= F((x_0z_n - x_0z_m)^*(x_0z_n - x_0z_m)) \\ &= F((z_n - z_m)^*x_0^*x_0(z_n - z_m)) \end{split}$$

and

$$||\bar{z}_n - \bar{z}_m||^2 = F((z_n - z_m)^*(z_n - z_m)).$$

Since F is admissible,

$$||\bar{x}_0\bar{z}_n - \bar{x}_0\bar{z}_m||^2 \le M||z_n - z_m||^2 \text{ with } M > 0.$$

Thus $\{\bar{x}_0\bar{z}_n\}$ is a Cauchy sequence with respect to the inner product norm, and hence the sequence converges to an element \bar{y} of H. Similarly we can show that if $\bar{w}_n \rightarrow \bar{z}$ with

respect to the inner product norm, then $\{\bar{x}_0\bar{w}_n\}$ converges to \bar{y} . Now we define the mapping $a \rightarrow T_a$ of A on H by

$$T_a \bar{x} = \bar{a}_0 \bar{x}, \ \bar{x} \in H \text{ where } \bar{a}_0 = \bar{a}.$$

Then, if $a, b \in A$,

$$T_{ab}\bar{x} = (ab)^{-}{}_{0}\bar{x} = (ab)^{-}\bar{x} = \bar{a}b\bar{x} = \bar{a}_{0}\bar{b}_{0}\bar{x}$$
$$= (a_{0}(b_{0}x))^{-} = T_{a}(b_{0}x)^{-}$$
$$= T_{a}T_{b}\bar{x} \quad \text{for all } \bar{x} \in H.$$

Similarly $T_{a+b} = T_a + T_b$ and $T_{\lambda a} = \lambda T_a$ for all $\lambda \in \mathbb{C}$. Thus $a \to T_a$ defines a representation of A on H.

Consider the restriction of the representation to A_0 . Let $a \in A_0$. Since F is admissible, we have

$$\begin{aligned} ||T_{a}(\bar{x})||^{2} &= ||\bar{a}\bar{x}||^{2} = (\bar{a}\bar{x}, \bar{a}\bar{x}) \\ &= F(x^{*}a^{*}ax) \\ &\leq M||\bar{x}||^{2} \text{ for some } M > 0, \ \bar{x} \in X_{E}. \end{aligned}$$

Hence T_a is a continuous mapping on X_F . Since X_F is dense in H, T_a can be uniquely extended to a continuous mapping \hat{T}_a on H. However if $\bar{x} \in H - X_F$, let $\{\bar{x}_n\}$ be a subset of X_F such that $\bar{x}_n \to x$. Then

$$\widehat{T}_a(\overline{x}) = \lim \widehat{T}_a(\overline{x_n}) = \lim T_a(\overline{x_n}) = \lim \overline{a}\overline{x_n}$$

= $\overline{a}\overline{x} = T_a(\overline{x})$.

Thus $\hat{T}_a = T_a$ and T_a is a continuous function on H for $a \in A_0$. Since T_a is continuous, we can show that $(T_a)^* = T_a^*$ by proving that $(T_a)^*(x) = T_a^*(x)$ for all $x \in X_F$.

Let \bar{x} and \bar{y} be elements of X_F , then

$$(T_a \overline{x}, \overline{y}) = F(y*ax) = F((y*a)x)$$

= $(x, (\overline{a}*)\overline{y}) = (x, T_a*\overline{y}).$

Thus for $a \in A_0$, we have $(T_a)^* = T_a^*$.

COROLLARY 3.3. If A_0 is also an algebra e.g., the product of bounded sets of A is bounded, then the restriction of the above representation to A_0 is a *-representation of A_0 on H.

Let X be a vector space over C and let K be a subalgebra of L(X). Let z be a fixed vector in X and let $X_z = \{T(z): T \in K\}$. Then X_z is an invariant subspace of X with respect to K. If there exists an element z of a normed space X such that $X_z = X$, then K is said to be topologically cyclic and the vector z is called a topologically cyclic vector. A representation $x \to T_z$ of A on X is said to be topologically cyclic if, when $K = \{T_x : x \in A\}$, there is a vector z in X such that $X_z = X$.

With these definitions we state the following corollary to Theorem 3.2.

COROLLARY 3.4. Let A be a commutative locally convex *-algebra with identity. Let F be an admissible positive Hermitian functional on A. Then the representation obtained above is topological cyclic with a cyclic vector h_0 such that $F(x) = (T_x h_0, h_0), x \in A$.

PROOF. Let $h_0=\overline{1}=1+X_F$. Then by definition $T_xh_0=\bar{x}_0$, so that the set $\{T_xh_0:x\in A\}=X_F$ and hence is dense in H. Thus h_0 is a topologically cyclic vector. Now let $x\in A$, then there exists $x_0\in A_0$ such that $\bar{x}=\bar{x}_0$. Thus

$$F(1*(x-x_0))=F(x-x_0)=F(x)-F(x_0)$$
.

By the way,
$$F(1*(x-x_0)) = ((x-x_0)^-, \bar{1})$$

= $(\bar{x}, \bar{1}) - (\bar{x}, \bar{1}) = 0$.

Consequently $F(x) = F(x_0)$. Therefore $(T_x h_0, h_0) = (\bar{x}_0 h_0, h_0) = (\bar{x}_0 \bar{1}, 1) = F(x_0) = F(x)$ for all $x \in A$.

4. Representable Functional

Let F be a linear functional on the locally convex *-algebra A and let $a \to T_a$ be a representation of A on a Hilbert space H such that the restriction of the representation to A_0 is a *-representation of A_0 on H. Then F is said to be representable by $a \to T_a$ provided there exists a topologically cyclic vector $h_0 \in H$ such that

$$F(a) = (T_a h_0, h_0)$$
 for all $a \in A$.

Let $a \to T_c$ be a representation of A on H and let

$$M=\{h\in H: T_ah=0 \text{ for all } a\in A\}.$$

If $M=\{0\}$, we say that the representation is essential.

LEMMA 4.1. If the representation $a \to T_a$ is essential, then each of the subspaces $H_h = \{T_a h : a \in A\}$ is cyclic with h as a cyclic vector.

Proof. [5, p. 206].

THEOREM 4.2. Let F be a Hermitian functional on the pseudo-complete commutative locally convex *-algebra A. Then in order for F to be representable, it is sufficient that

- (1) for each $x \in A$, there is a $x_0 \in A_0$ such that $\bar{x} = \bar{x}_0$,
- (2) $|F(x)|^2 \le \mu F(x^*x), x \in A$,

where μ is a positive real constant independent of x.

PROOF. Assume that F satisfies the conditions and denote by A_1 the pseudo-complete locally convex *-algebra obtained by adjoining the identity element to A. Extend the functional F to A_1 by the definition,

$$F(x+\alpha) = F(x) + \mu\alpha$$
 for $x \in A$ and α a scalar.

Then

$$F((x+\alpha)^*(x+\alpha)) = F((x^*+\bar{\alpha})(x+\alpha))$$

 $= F(x^*x+x^*\alpha+\bar{\alpha}x+\bar{\alpha}\alpha)$
 $\geq F(x^*x)-2|\alpha||F(x)|+\mu|\alpha|^2$
 $\geq F(x^*x)-2|\alpha|\mu^{\frac{1}{2}}F(x^*x)^{\frac{1}{2}}+\mu|\alpha|^2$
 $=(F(x^*x)-|\alpha|\mu^{\frac{1}{2}})^2.$

Thus F is a positive linear functional on A_1 and Theorem 2.6 guarantees that the first condition of admissibility is satisfied on A_1 . To show that the second condition is satisfied, let $x+\alpha\in A_1$. Then by hypothesis there exists $x_0\in A_0$ such that $\bar{x}_0=\bar{x}$. Consider $x_0+\alpha$. Then since $\bar{x}_0=\bar{x}$ and $(x-x_0)\in L_F$,

$$|F[(y+\beta)^*((x_0+\alpha)-(x+\alpha))]|^2$$

$$=|F[(y+\beta)^*(x_0-x)]|^2$$

$$=|F(y^*(x-x_0))+F(\bar{\beta}(x_0-x))|^2$$

$$=|\bar{\beta}F(x_0-x)|^2$$

$$\leq |\beta|^2F[(x_0-x)^*(x_0-x)]=0.$$

Consequently $(x_0+\alpha)^- = (x+\alpha)_0^-$.

Therefore F is an admissible positive Hermitian func-

tional on A_1 . Hence by Corollary 3.4 there exists a representation $x \to T_x$ of A_1 on H defined by $T_{(a+a)}x = (a+\alpha)_0 \overline{x}$ and such that

$$F(a+\alpha)=(T_{a+\alpha}h_0,h_0)$$
 for some $h_0\in H$.

Now let $N=\{h\in H: T_ah=\theta \text{ for all } a\in A\}$.

Consider the restriction of $a \rightarrow T_a$ to the space N^1 , where

$$N^{\downarrow} = \{h \in H : (h, n) = 0 \text{ for all } n \in N\}.$$

Since $\{h \in N^1: T_a h = \theta \text{ for all } a \in A\} = \{0\}$, the restriction is essential.

Let $h_0 = h_0' + h_0''$ where $h_0' \in N^1$ and $h_0'' \in N$. Then for all $a \in A$ we have

$$F(a) = (T_a h_0, h_0) = (T_a (h_0' + h_0''), h_0' + h_0'')$$

$$= (T_a h_0', h_0' + h_0'') = (h_0', T_a * (h_0' + h_0''))$$

$$= (h_0', T_a * h_0') = (T_a h_0', h_0').$$

Thus there exists $h_0' \in N^+$ such that $F(a) = (T_a h_0', h_0')$ for all $a \in A$. Let $H_0 = \{T_a h_0' : a \in A\}$. Then, since the restriction of the representation to N^+ is essential, by Lemma 4.1 H_0 is cyclic with h_0 as a cyclic vector.

COROLLARY 4.3. If A has an identity element, then every positive functional which implies condition (1) is representable.

PROOF. If A has an identity element, then by the Cauchy-Schwarz inequality, we have

$$|F(x)|^2 \leq F(1)F(x*x)$$

for any positive functional F. Thus, condition (2) is au-

tomatically satisfied.

COROLLARY 4.4. Let F be an admissible positive Hermitian functional on the pseudo-complete commutative locally convex *-algebra A. Then there exists a *-representation of A_0 on a Hilbert space H.

PROOF. If A is commutative and pseudo-complete, then A_0 is an subalgebra of A [1]. Therefore by Theorem 3.2 and Corollary 3.3, the proof is obvious.

References

- [1] G.R. Allen, A spectral theory for locally convex algebra, Proc. London Math. Soc. 157(1955), 399-421.
- [2] _____, On a class of locally convex algebra, Proc. London Math. Soc. 17(1967), 91—144.
- [3] S.K. Berberian, Lectures in Functional Analysis and Operator Theory, Springer-Verlag, 1974.
- [4] F. T. Birtel, On the commutative extension of a Banach algebra, Proc. Amer. Math. Soc. 13(1962), 815—822.
- [5] Charles E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton 1960.
- [6] M. A. Naimark, Normed Rings, Noordhoff, Groningen 1960.

Department of Mathematics Ch'angwon National University Ch'angwon 615 Korea

Received May 15, 1987