SOME PROPERTIES OF PROJECTIVE REPRESENTATIONS OF SOME FINITE GROUPS

Ch. Hwang

The representation group G^{*} of metacyclic group $G=B H$, $H \Delta G$ is known. When $|B|$ is prime, representation G^{*} can be easily obtained. Using this fact, some properties of projective representation of G will be discussed.

Theorem 1. Let $G=\left\langle x, y \mid x^{n}=1, y^{p}=1, y^{-1} x y=x^{p}\right\rangle$ where $(n, r)=1, p$ is prime. Then the number of irreducible projective representation with degree I is $p(n, r-1)$ and the degree of the irreducible projectve representation of G is one or p.

PR00F. $H^{2}\left(G, K^{*}\right) \cong Z_{q}$ where $q=\frac{k(n, r-1)}{n}, k=\left(n, \frac{r^{p}-1}{r-1}\right)$. By [3] the representation group G^{*} of G is

$$
\begin{gathered}
\langle x, y, z| x^{n}=1, \quad y^{p}=1, \quad z^{q}=1, y^{-1} x y=z x^{r}, \quad x z=z x, \\
y z=z y\rangle .
\end{gathered}
$$

Also $\langle x, z\rangle \nabla G^{*},\langle y\rangle<G^{*}$ and $\langle x, z\rangle$ is abelian. So G^{*} is the semidirect product of $\langle y\rangle$ by $\langle x, z\rangle$.

Let T be a representation of $\langle x, z\rangle$. We define $T^{a}: h \longrightarrow$ $T\left(a^{-1} a^{h}\right)$ for $h \in\langle x, z\rangle$ and $a \in\langle y\rangle$. Then $S_{\tau}=\left\{y^{k} \in\langle y\rangle \mid T y^{k}\right.$ $\cong T\}$ is a subgroup of $\langle y\rangle$. Since $|\langle y\rangle|$ is prime, $S_{T}=\{e\}$
or $S_{T}=\langle y\rangle$. So by [4], $S_{r}=\langle y\rangle$ iff ($T \otimes \rho$) has degree 1, where ρ is an irreducible representation of $\langle y\rangle$.

All the irreducible representation whose degree is 1 has the form $T \otimes \rho$. So we have

$$
\left.\begin{array}{rl}
T y^{k} \cong T \text { iff } T y^{k}\left(x^{2} z^{3}\right) & =T\left(x^{i} z^{3}\right) \\
\text { iff } T y^{k}\left(x^{i} z^{i}\right) & =T\left(y^{-k} x^{i} z^{i} y^{k}\right) \\
& =T\left(x^{i r^{k}} z^{3+\left(1+r^{+}\right.} \cdots+r^{k-1}\right)
\end{array}\right) .
$$

where $T(x)=\xi_{1}{ }^{d_{1}}, T(z)=\xi_{2}{ }^{d^{2}}$.

$$
\left(\xi_{1}, \xi_{2} \text { are } n, q \text {-th roots of } 1 \text {, respectively. }\right)
$$

So

$$
\begin{aligned}
S_{T}=\langle v\rangle \text { iff } d_{1}\left(1-r^{k}\right) & \equiv 0(\bmod n) \text { and } \\
d_{2} \cdot \frac{1-r^{k}}{1-r} & \equiv 0(\bmod q)
\end{aligned}
$$

for all $k, 0 \leq k \leq p-1$
and

$$
S_{r}=\langle y\rangle \text { iff } d_{1}(1-r) \equiv 0(\bmod n),
$$

because $\left(1+r, 1+r+r^{2}, \cdots, 1+r+\cdots+r^{k-1}\right)=1$. So such $\left\{d_{1}\right\}$ is $(n, r-1)$. Therefore $\{T \otimes \rho\}$ is $p(n, r-1)$.
Since S_{r} is $\{e\}$ or $\langle y\rangle$, the degree of irreducible representation G^{*} is 1 or p. So the degree of projective irreducible representation of G is 1 or p. So our proof is completed.

THEOREM 2. Let $G=\left\langle x, y \mid x^{x}=1=y^{\phi}, y^{-1} x y=x^{\gamma}\right\rangle$ with $(r, n)=1, p$ prime, and $1+r+\cdots+r^{\beta-1} \equiv 0(\bmod n)$.
(1) Then $p=q, p \mid n$ and $H^{2}\left(G, K^{*}\right)=\left\{1,\{\alpha\}, \cdots,\left\{\alpha^{p-1}\right\}\right\}$.
(2) For each $\left\{\alpha^{k}\right\}$, there exists exactly n / p linearly inequivalent projective representations with factor set $\left\{\alpha^{k}\right\}$.
(3) In this case

$$
\begin{aligned}
& T_{k z}(x)=\operatorname{diag}\left\{\left\{^{k+z}, \xi^{k(1+r)+r_{2}}, \cdots, \xi^{k\left(1+r+\cdots+r^{p-1}\right)+r^{p-1} l_{i}}\right\},\right. \\
& T_{k:}(y)=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & 0 & \cdots & \cdots & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \\
& T_{k z}\left(y^{\prime} x^{l}\right)=T_{k z}(y)^{\prime} T_{k i}(x)^{2},
\end{aligned}
$$

and

$$
\alpha\left(y^{\prime} x^{i}, \quad y^{l} x^{m}\right)=\xi^{\left(1^{+r+}+\cdots+r^{l-1}\right)},
$$

where ξ is a primitive n-th root of unity.

Proof. In this situation we have $k=\left(n, \frac{r^{p}-1}{r-1}\right)=n, q=$ $k(n, r-1) / n=(n, r-1)=d$. Therefore $r^{p}-1 \approx(r-1)\left(r^{p-1}+\right.$ $\cdots+1) \equiv 0(\bmod n)$ and hence $0=1+r+\cdots r^{p-1}=1+1+\cdots+1 \equiv$ $p(\bmod d)$. But p is prime so $d=1$ or $d=p$. So $d=q=1$, $H^{2}\left(G, C^{*}\right)=\{e\}, d=p=q$, and $p \mid n$ since $(n, r-1)=d=p=$ q. Now by [1], $T_{k i}$ is a projective irreducible representation of G wich degree p with the factor set $\left\{\alpha^{k}\right\}$. Also their equivalence can be found in [I\}. So for each $\left\{\alpha^{k}\right\}$ we have n / p linearly inequivalent projective representation.

References

[1] Seung Ahn Park, Projective representation of some finite groups, J. Korean Math. Soc. 22(1985), 173~180.
[2] Curtis, W.C. and Reiner, I., Representation Theory of Finite Groups and Associative Algebras, Pure Appi. Math, Vol.11, Interscience, New York, 1962.
[3] \qquad , Methods of Representation theory, Vol. 1, Wiley Interscience, 1981.
[4] J-P. Serre, Linear Representations of Finite Groups, SpringerVerlag, GTM 42, 1964.

Sanub University
Pusan 601
Korea

Received May 18, 1987

