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GALOIS SUBRINGS OF UTUMI RINGS
OF QUOTIENTS

Chol Ho Um

1. Introduction

For the Galois theory of semiprime rings the importance 
of crossed products was firstly noticed by T. Nakayama in 
E8J. A隹교is qmWng" Ae theorem
crossed product has greatly influenced to Galois theory. 
But still at his time there was no systematic scheme between 
crossed products and Galois subrings. M・ Cohen [3] success
fully provided a systematic wMorita context" between them 
by the hint of Chase, Harrison and Rosenberg. But actually 
J. Osterburg and J. Park pointed out that her context is 
the derived context of some of module.

As J. Osterburg and J. Park did in [9] we consider crossed 
products and Galois subrings altogether at the same time via 
the drived Morita context. Indeed we prove that the Utumi 
quotient ring of Galois subring is the Galois subring of the 
Utumi quotient ring in different way. Also we consider the 
normal basis theorem for regular self-injective ring case. 
By our normal basis theorem we can generalize M. Cohen* s 
result [3] for the semi-simple artinian ring case. Some our 
results in this paper were alrealy proved in [9].
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2. Preliminaries

In this section some necessary definitions and properties 
will be given. All rings are assumed to have identity ele
ment. R denotes a ring and all modules are right jR-modu- 
les, unless otherwise mentioned.

Definition 2.1. A Morita context consists of two 호ings 
R and S, two bimodules sPr and and two bimodule 
homomorphisms (calle서 the pairings)

(,):Q 寫 JP ---- > R
and

[,]：—，S

the associativity crniditrinrs 오';=(g/)후'-졌玉d
Z(g, Pf) = Ca

The images of the pairings are called the trace ideals of 
the context, and are denoted by TR and Ts. We abbreviate 
a context by the symbol (P, Q〉.

For any 2?-module PR let P* = RJ) and S=End
(3). Then P* is a right S and left R-bimodule. Define 
pairings ( , ) and [ , ] as follows； ( , )： —，R by
(£ />) =f(p) and [ , ]： 과—-S by【0 f](x) =pf(r)
for x in P・ Then it can be easily checked that (R P, P 
S) is a Morita context between R and S. This particular 
context is called the derived Morita context of Pr、For the 
left module case, we can define the derived Morita context 
similarly.

Example 2.2. From two module XA and TAf define

R=EndA (X), S=EndA (Y),
P—HomA(X9 y), and Q=HomA(Y9 X)
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with pairings by composition. Then (P, Q〉is the Mo호ita 
context of two rings R and S.

Example 2.3. Let (A, P, Q, a^} be a Morita context.
Define the generalized matrix ring

R = W P],
L Q B」

a,3 by usin^ ordinary matrix addition and multiplication by
means of
Put

a and 仇 Then R is actually a ring.
o
 
o

IX 
o
 

r
—L
=

Then A = eRe, B= (l-e)R(l - e),
P—eR(l~e)9 Q= (l-e)Re.

In general R is an arbitary ring with an idempotent e5 
then (eRe. (l-e)R(l-e), eR(l-e), (l-e)Re, % 0〉is a 
Morita context for suitable a9 &

Associated with any Morita context Q} there are eight 
nat ual maps, e. g., 一]wQ* = Homs(0 EndR(P))
and r^R^(q^rq)e. Ends(Q), where Q=HomR(P, R) and 
S = EndR(P).

Definition 2.4. The context (P, Q〉is called non-dege
nerate if all these natural maps are injective.

Definition 2. 5. A Morita context is right normalized if 
난le four natural maps P—>Q*, R = Ends(Q) and S—»
Endr(P) are isomorphisms.

Theorem 2.6 [7, Theorem 19]. If a Morita context <P, 
Q} between two rings R and S is nondegenerated, then the 
maximal quotient Morita context <P, Q〉between Qmax(^) 
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and QmaJS) induced by (P, Q} is ri아it normalized.

Let A be a finite dimensional central simple algeb호a over 
its center field F. Then A has a maximal subfield K・ If K 
is a Galois extension of F with a Galois group G then there 
are invertible elements {ag: g in G} of A such that A==@Kag9 
a direct sum of left vector spaces, where for all x in 
K9 z%=%g(z). Moreover defining Z(g, h) =agaka~^ for 
each g, h in G, we have t(g9 h) is in K and the following 
equations hold for all g, h9 k in G：

h)t(gh. k)=t(h, k)t(g.幻.

By this fact we define a crossed product formally as 
二h너Hpws.

Definition 2.7. Let K be a ring and G be a group. Given 
a group homomorphism />:G—*Aut(K) and a map £：GxGt 
U(R) the units of R such that

(1) 心,y)t{xy, z)=t(y, yz)

and

(2) t{x9 ；y)次以叫 3 y)
fo호 all x9 y9 z in G and a in R. We define the crossed 
product R*G to be the set of all formal sums of the form 
J^axx with ax in R and ax=0 for almost all x in G・ The 
addition in R^G is defined componentwise and the multipli
cation is given by the rule

(axx) (ayy) y)xy.

This makes R^G an associative ring with identity ^(1, I)"1 1. 
When t(x, y)=l for every y in G, the crossed product 
is called a skew group ring and denoted by RG.
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Example 2.8. Let G be a finite group of automorphisms 
of a field F. Then the skew group ring FG is the nxn 
matrix ring over 바le fixed field Fc9 where n is the order 
of G・

We set some notations and basic definitions. Let G be a 
group of automorphisms acting on R. By rs we mean the 
image of r under g in G・ The fixed ring of R is RG~{r 
in R I rs=r for all g in G}. The trace of x is tr(x)=

Note that tr{x) is in B9. An ideal 乙(left or two sided) 
of R is called G-invariant if L8 is contained in L for all g 
in G・ The ring R is said to have no |G|-torsion if |G|r=0 
for r in R implies that r = 0. If 贫 is a Gabriel filter on R 
then t(、RQ is the set of all a in R whose right annihilator 
is a member of 多 and is called the torsion submodule of 
Rr with respect to 笋.

3・ Main Results

When G is a finite group of automorphisms of R we can 
form a skew group ring S=RG over R.

For a given Gabriel filter 贫 on R9 罗={£z广 

is in 歹} is a Gabriel filter on RG by K. Louden [6, 
Lemma 8].

We recall that 力(Rr) is the torsion submodule of Rr with 
respect to 워、is the torsion submodule of SR with 
respect to 多 and t(Ss) is the torsion submodule of Ss with 
respect to 贫.Then we can obtain 认、Rr、)S=KSs) and £(S&) 
= /(Ss)・ Furthermore 7(&)=#(£?)「)&・ We call that % is 
a G-invariant (or an automorphism invariant) if P is an 
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element of 罗 for all I in 筝、g in G.

Lemma 3> 1. If 筝 is an automorphism inva호ia교t, then every 
automorphism of R can be extended to an automorphism 
of Q(R).

Proof. Let t(R) be the torsion submodule of R with 
respect to 贫. Since 笋 is an automorphism invariant, 
g(/(R))=^(R) for all g in Aut (R). Let f be an R-homo- 
morphism from D to R/t(R) which represents an element of 
Q(_R). Define g(/) from g(D) to R/t(R) by g(f) (g(0)) 
= g(J「C)) for d in D. Then g( f (・R) ) = 8(」R)g( f) is well- 
defined. For, if f^d1)=f(d2) for ■广(％), f{d^) in R/t(R). 
如t 犬』i) =广and 六d2)=72~H(R) ri, r2 in R.
Since rl + t{R) = r2+t{R) we have ,i一a is in t{R) and hence 
g(，i-a) is in t(R). It follows that g( •广(％)) =g( J「(02))・ 
Therefore g(/「)(g(c"))=g(•广)(g(MM)) which completes the 
well-definedness. Next we show that g(jf) is a homom
orphism. Since g( f )(g(0i)+g(&2)) =g( f )您(日1 + <爲))= 

g(jf(ai +』2))=g(f(ML)+r(H2)) = g(・"S))+g(J「(02)) = 
g(r)g(& + g(f )g(』2)and g( J「)(g(爲)广)= g(f)(g(』k)) 
=g(jf(0/)) = g(r(%”)=g(/、(％))，= g(・Q(g(0)), for all 
g(%),g(日2)in g(Q) and r in R. Thus g( f) is a homom- 
orphi옹m and this defines g on Q(R) to be an automorphism.

By Lemma 3.1, if 贫 is a G-invariant filter, then G can 
be considered as an automorphism grou호 on Q我Let [g] 
be in Q罗(R) which is represented by q： D~~>R/t(R) with D 
in %、Define q\ DS—S/t(S、) by q(2Wgg) = Z：g(Og・ Then 
since R/t(R) is contained in S//(Sr) and £(S&) = t(Ss), q 
is well-defined and an 5-homomorphism and 히Z)= q with
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DS in 贫.Let be in Q^（S） represented by this map q. 
For any g in G, the left multiplication Lg:Ss---->Ss induces
an S-homomorphism Lg:S/t（Ss）-一>S/t（Ss\ So Lgq： DS 
---->5/^（S5） represents an element in Q孑（S）.

Theorem 3.2. Let G be a finite group of automorphisms 
of R and S=RG、Then for a G-invariant filter 筝 on R, 
Qy（R）G is isomorphic to Q多（、S、）・

Proof, Define f:叫（R）G—&歹（S） by f（Zg［q 提）= 

2」丄乙£車』. We divide the proof into five steps.

Step 1. We 아iow that f is well-defined.

If ［幻%］, then ［g葯=그［四』fur a丄 1 girr-G. Thus
there exists Dg in 贫 such that q효 and wg are coincided on 
Dg for all g in G. Therefore for all g in G, qg and ws agree 
on DgS and DgS is in 贫.So for all g in G, Lgqg — Lgwg 
on DgS. Hence \_Lgqg］ = \_Lgzdg］ for all g in G. Consequently

Hence f［斜D and 
therefore f is well-defined.

Step 2. We 아low that f is additive.

Since 以々］ ［0』= ［丄用丄 and ［Qg + 也』：나0』+ ［勿we ha
ve following：

r（Zg［g』+ggg］）=jf（£g（M + ［z"））
=f （S g】Qg+也招）=Z： ［Zg。海7互）］=E ［Z』［Qg+列打 

= S L뵈 （［阳 + lwg2） = s ［々［福 + Z ［Z河殊］ 

=£匚乙血］+、［玲％］=顼（Zg［g』）+jf （Eg［也』）.

Hence f is additive.

Step 3. We show that is a homomorphism.
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Choose and h[w^\ in Q^(R)G with qg'Dx---- ^R/t(R)
and wA: D2---- lR/£(_R) for g, h in G. Then we have g[g』

hLwh2 =gh{.qg]k{wh]. Let [匂=[德”.Then M is represe- 
Wed by xzD^----^R/t(R) ； N(df) =%(』])“ for dY in So
gE』끼:也」=g五["]□%]. Let y-lxwh]. Then Lyl is re- 
presented by 夕； 叫-쯔皿粉(Z)f)-土R//(R), 
where x is the induced 2?-homomorphism from x. Hence 
•f (gEU所如启)=jf (g五3)=[孩刃 is represented by S-

AZ L L
homomorphism：叫尸—> S/t(S)-^S/t(S).

On the other hand, f(gLqg3)f (h£wkJ) = LLgqg2 is 

represented by the composition； wh~1h~1(DlS/t：(D1S)) 쯔丄 

LL(DiS/t(D、S)、) ―%D\S/t(D\S、) 虺흐，S/Z(S)-冬S/t(S) where 

9g is 바1。induced map from qgt In this case 币八(、D1(D\S)) 
=DfS/RD〈S、) and w^L^CD.S/t^S)) = 
(DfS))=%"i 0"(Df))S. Let 2)3=四广(玖"0丫)). 

Then for d in D3 and k in G, (dk) =Lgh(y(d)k)= 
^gky(d)k~Lgh\^xwk(d)^k. Let wh(d) =dih + t(Dlh) with dx 
ii")].The그 元曲[炊勺(0)丄" = 玲忐"0Q+*以산)M = 爲见저0Q]

Lghiqg(dl)h2k = Lg[_qg(dl)2hk. And we have (Z诵§乙血叫)

(时*"(S))= (I* ("如H(S))=邮牌沖=Lg Lqg 
(%)]五虹 Hence f(gLqglhCwJ) (gLqg3)f(hCwJ). There
fore J7 is a homomorphism.

Step 4・ We show that f is one to one.

Suppose [2优云』=0 with qs'DgS---- >S with Dg in 贫，g
in G. Then 2兀无用J is represented by the *S-homomor- 
phism： A (DgS)——>S〃(S)； x\——^Lg(qg(x)). Since SLLgq^\
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=0, there exists a G-invariant jD0 in 贫 such that DQS is 
contained in fl (DgS) and Lg(qg(x)) =0 on D0S. Now for 
every dQ in 0=Lg(qg(dQ)) Let qg(do)=
rg+t{R^) with rs in R. Then 0=Z乙g(Qg(do)) = 2：£g(j + 
Z(R)) = Z Lg(rs+t(S)') = S (g々 + *(S)) = (£ 財Tg)+Z(S). 
Hence Sr/-1g is a element of l(S) =t(R)S. So for all g in 
G, r/-1 is contained in t(R). Hence rg is a element of t(R) 
for all g in G. Therefore qg(dQ)= rs + t(R)=Q for all g in 
G and dQ in Do. Hence qg=。on Do.

Therefore [q』= 0 and so 2】g[gg] = 0. Hence Ker f— {0}. 
Thus f is 1-1.

Step 5. We show that f is onto.
Let 式S) r翎re芸axtedJ上yr： US---- S馈(S) withJ)

in 贫.Let /> be a map from S/t(S) to R/t(R) defined by 
力(2云小+方(S)) = 七어"(R) for all g in G. Since 
2(S), p is well-defined and an 7?~homomorphism.

Dr ——S/t(S) d I------一스 r (d)^ + t(S)

r(d)^ + t(R^ 
g rR/t(R)

where r(d)h is a element of R for all h in G・ Thus px is 
an -R-homomorphism： DK---- ^R/t(R). We will show that
[幻=£也方曰). 2工玲网 is represented by DS 
 *S"(S)； y\---- »£Z；g[(0z)(，y)]. Now for d in D and h in 
G；---------- 以冰z)] = ZZg([(Z啓)(0)M) = Z(Z"(加:)(0)〕" =

Er(^)/+^(7?)]A=S + t(S))h = 2 (gr(d)g+t
(S))h = Z(r(d)gg+t(S))h = E(r(d)s+t(S))gh and x(dh) = 
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K(d)h=E(質(d)gg+Z(S))h = S(r(d)g+t(S))gh. Hence 匚曰 

=%[Eg林]=r(ZgL飾]).Thus f is onto. Resultly f is an 
isomorphism. Thus Q寧(R)G is isomorphic to Q戸(S).

An overring S of a ring R with same identity is called a 
finite normalizing extension ring of R if S is finitely 
generated as an 7?-module by elements which normalize R,

n
that is, S=Z Rxt with Rxz=xzR for each i.

S = 1

For example, it includes crossed product R*G with a finite 
group G,

Lemma 3.3 [5, Theorem 3.2], If is a finite

nnrmali z.ing^oir of R wi솨!一X] = 고丑=1$, their for M-rn. 
Mod-R, HomR(SR9MR) is an injective 5-module if and only 
if M is an injective module.

Immediately by the above Lemma we can get Hom효(Sr, 
Er(R)) =Es(Hom，R(S표, RQ).

Lemma 3.4. Let S=RG be a skew group ring with a 
finite group G, and let 贫 be the Lambek topology (or 
topology) on R. Then 貧= 匚卜구 八RG：“1 Ru贫} is the Lambek 
topology on RG.

Proof. By the above Lemma 3.3, we have HomR(RG9 
E(R)r)= HomRG{HomR(RG9 Rr))=E(RG)rg. Since E(R)r is 
an injective cogenerator, HomR(RG9 E(R)) = E(RG)盼 is 
an injective cogenerator by K. Louden [6, Proposition 4X 
Therefore 贫 is also a Gabriel filter on RG.

Corollary 3.5. Qmax(R)G is isomorphic to QgJ&G).
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Proof，Define /: Q球JR）G—Qn"（RG） by ^（爵［臨）=

Step 1. f is well-defined.

It is obvious that ZLLgqs3 is in Qmax（5）. Now if Zg［gJ 
= 2：g［?%］ with 丄［也』in 0『顷）・ Then we can obtain 
［冬』=［切』for all g in G. Therefore there exists Dg in 
贫 such that qs\Dg = ws\Ds for all g in G. Thus we have 
qg\DgS=wg\DgS and DsS in 寻 by Lemma 3.4 for all g in 
G. Hence Lgqs\DgS=Lswg\DgS for all g in G. Therefore 
we have £Lgqg］ = rLgwg3 for all g in G. Consequently, 
f（Zg［g』）=1口词』=2［氐［也』）. Thus f is 
well-defined.

Step 2. f is additive.

Since ELJ =［乙叔』and ［如+吹喝=E』+顷』,f is
clearly additive.

Step 3. is a homomorphism.

Suppose f（gLgg'］） — LLgqg'］ with qs\ £）코---晶 and
=〔Z成异 with 5.DlRh. Then f（gLqgl 五如肩）=/”（g7心日" 

［也肩）.Let ［zz］ = ［gg］« Then {u} is represented by 由：

Rr；拔（妃、）=q莒（dV for dx in Dit So f{glqg\h［wh］）=f{gh 
［z"［叫J）. Let "门=［小［ze启 and let £〉3=叫厂1以）任）.Then

_ w?, r u
矿Z）3 一—>Rr represents ［”L So 須（g［gU血刼肩） =顶（乙까 

［勿） = ［如刃;으 Ss一殴S& Now for J”（gE［）丿‘。［叫①= 

匚乙云』［£威"］is represented by the composition； 殉}订' 

（ZgS） ―%L广（D〔S） ―七D\S&%Ss으^S& In this case LL 

（D、S）=D/S and 以一】（乙湼以入S））=乙广（邳S） = ZL（g）S 
=£%S・ Now for dk in DZS with d in Z>3 and k in G； 
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(Lgkv) {dk) = gh(v(J)k) — gh u(3h(、d「)、)k = gh u£(wh(d)h~l)h2k 
드*加迅(啊 (d)L)T%=g[0g(叫 (疔T)] 碇.

On the other hand (LgqgLhWh) (dk) = (LsqgL^) =
gq g) 아物 Jd) 罚 = (£ 迅)("约 (#)"-%)= Lg {qg (wh (d) h~ lhk) ) 
=g(0g(糾(d)L)%)=g(细(物以)L))까. Hence 氐&\。3、= 
1七4丄術k\D£ Therefore

虹初启) =f(gLqg3) f아i〔u心.
So /, is a homomorphism.

Step 4. f is one to one.

Suppose mLgqg~] = 0 with qg:DgSs---- > S5, Then £ [乙

is represented by 5-homomorphism；

n(Dgs)—허s&
士一纟 g0g(”)).

Since X； [Lgqg] = 0, there exists G-invariant jD0 in 笑 and 
£*Sjn(DgS) such that 2脂(五(勿))=。for all x in DQS. 
Now for <70 in，為，0=Z g(4g(0o)) = £构上(』°)厂'$ Hence qg 
(或)厂'=。and so Qg(0o)=。for all g in G and dQ in Dx So 
%=0 on Dq9 Qg = 0 on De for all g in G・ So [g』= 0・ Hence 
we have ZgE』=0for all g in G. Therefore Ker/={0}.
Thus f is one to one.

Step 5. f is onto.

Let [rr] be element of Qfflax(5) 
represented by x\ DSs-^Ss with D 
in叽

Define pt Sr^Rr by M2、가) 
=r/ for all g in G.
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Then p is an J?-homomorphism. So = £[(?") (d)]g 'g 
for all d in D. So in Qy(R) represented by px\ 
Dr---- ，Rr.

Claim, [z] — S LLgpx2

S [_Lgpx2 is represented by the 5-homomorphism； DSs 
----，Ss： y\----*Sg( px(y)). Now for d in D and h in G, x 
(dh) =x(d)h= Z；[(加:)(d)2g~lgh and 2g ( 一质(日五))=Sg 
[(?n)(0)切= (2g (0“)(d))h = £ [($啓)(d)]lg如 Hence 
[x~\ = S \_Lg =/(Eg* E with LgH P^\ in Qmax(R)G. 
Hence f is onto. Resultly f is an isomorphism. Thus 
Qg(」R)G is isomorphic to Qm(RG).

묘a ffatiie grrnip G of autoinoxpliiBnis of a semipri^ne 
ring R9 let t=^g and S= RG. We note tR is a bi R9 — S 
module, the right action of S being 々公尸招=芝"(〃;)勻 The 
left action of RG is 시ear. Also 7? is a bi S—R0 module, 
where 厂 = 2財g厂후-'. In this case to consider the derived
Morita context of the left 5-module SR. we note that Hom 
(sR, *) = R3 and Hom(sR, S) =tR.

Lemma 3.6. The derived Morita context of SR is〈S, 
sRrG,収玦,Rg» where pairings are ( , )： tR0sR~^RG9 
(：% Z>) = £厂(况，)and [ , R^»sg*R----，S： tb~\=atb.

Proof. Let p*. tR---- ^Hom(sRy S) by @(")=尤 where
jf(尸) =E質. The교 HcmzQR, S)=tR. And let q「「R。----이n($R,
*R) by g(，)=g, where g(r) = r for all r in R・ Then Hom 
(sR, sR) = Rg. Since tc\_a9 珀]= *(a珀)= £gc(&3) = £(gca) 
tb—'Zl {ca) gtb=tr(ca)tb= (tc^ a)也 and [a, H八c=(atb、)c = a 
(tbc) =a(^gbc) =a(Z (bc)s)=atr(bc} =a(功、c).
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Therefore〈S, s&rg, rg^Rs,R。) is the derived Morita con
text of SR.

Now we prove the result of [8, Theorem 2] di任erently.

Theorem 3.7. If the derived Morita context 〈S, &R吟 

RGtRs, RG、) in nondegenerate, then Qmax(R)G=Cmax.

Proof. Since <S,sRrg9rg^Rs9Rg) is nondenerate,〈Qmax(S), 
Q(sRrg), Q(rTRs), Qmax(膏)〉is ri아it normalized by Theorem 
2.6. By Corollary 3.4 and Theorem 3.2, Qmax (S) = Qmax (R) 
G and Q(*R) is the left quotient module Qmax(-R) over the 
ring So we have Qraax(7?G) = HomQm&x^(Q(sK)y
Q(sR)) and HomQm^RyG (Qmax (R), (R) ) = (R)G.

A&或욨셔나ei曲n±ary and well known, one can imbed a commu
tative integral domain in a field, being nothing else than 
the fractions created from the elements of the domain. O. 
Ore gave the appropriate conditions in order that this be 
possible for noncommutative rings without zero divisors. 
We shall give an account of this rather, more general sit
uation below. But first a few definition are needed.

Definition 3.8. An element in a ring R is said to be re
gular if it is neither a left nor ri아it zero divisor in R.

Definition 3.9. An extension ring Q(R) of R is said to 
be a left quotient ring for R if:

1. every regular element in R is inve호ti비e in Q(R).
2. every x^Q(R) is of the form x = a^lb where a, bwR 

and a is regular.

If Q(」R) is a left quotient ring of R we say that R is 
left order in Q(R). In any ring R, for a nonempty subset
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S q£ R let Z(S) = {zeR：zs = 0 for all swS}. We call Z(S) 나 

left annihilator of S and term a left ideal X of 7^ a left 
annihilator if X=Z(S) for some appropriate S in R. We 
similarly define the 호i아it annihilator r(、S) of S and speak 
of a right ideal as a right annihilator.

Definition 3.10. A ring R is said to be a (left) Goldie 
ring if:

1- R satisfies 바ie ascending chain condition on left 
annihilators.

2. R contains no infinite direct sums of left ideals.

Clearly a left Noetherian ring, that is, one satisfying the 
ascending chain condition on left ideals is a Goldie ring. A 
ring R is said to be semiprime if it has no nonzero nilpo
tent ideals.

Theorem 3.11 [Goldie丄 Let R be a. semiprime left Goldie 
ring. Then R has a left quotient ring Q = Q(_R) which is 
semisimple artinian.

There has been a great deal of interest; in group of outer 
automorphism, i. e., automorphism g for which there does 
not exist a unit u such that rg = u~lru for all r in R. Let 
R be a. semiprime rin^ with a finite group G of ring auto
morphisms of R. Let S denote the ring of quotients of R 
relative to the Gabriel filter which consists of all two sided 
ideals whose annihilator is 0. An automorphism g is 
called X-outer if srs — rs for an s in S and for all r in R 
implies that s=0. The group is called X-outer if each g 
(gm*l) in G is X-outer.
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Corollary 3.12 [S. Montgomery]. If R is semiprime 
ring and a finite group G of ring automorphism of R is X- 
outer. Then R is right Goldie if and only if RG is right 
Goldie.

Proof. If R is right Goldie, then Qmax(2?) is semi-simple 
Artinian and G acts on Qm3LX(R) as X-outer. So G is com
pletely outer on Qm&x(R) and hence Qmax(R)G = Qfflax(-RG) is 
semi-simple Artinian. Thus R° is semiprime right Goldie, 

Conversely, suppose R° is right Goldie. Then since the 
context〈S, Rg Rz、R0、) is nondegenerate, R9 is semiprime 
and hence Qmax(K) = Qmax("R)° is semisimple Artinian. Now 
by Amitsur Elj, Muller [7] and Theorem 3. 2, 나le maximal 
quotient context (Q.^(R)G, Q^(RY Q球丄氏)& QgxGB)。〉 

is also nondejenerate and hence = Qmax
has finite Goldie dimension. Hence Qm&x(R) is 

finitely generated over Qm&x(R)G and so Qmax(-R) is Artinian. 
From the nonde^eneracy of the maximal quotient context, the 
semi-primitivity of QmAX(R)G follows from Qmax(-R)G and 
so Qmax(R) is semiprimitive. Hence R is right Goldie.

Lemma 3.13. If R is a right rationally complete, semi
prime 호ing and (S9 R, Rt, R9> is nondegenerate. Then

(1) R is right self-injective iff RrG in injective.
(2) If RG is ri아it self-injective 나计(R) = R9.
(3) If tr(R)=RG then RrS is finitely generated.

Proof. (1) Suppose RrG is injective. Then HomRG(R9 R) 
=S is injective because RrG is torsion free with respect to 
torsion theory induced from the trace ideal Zr(R) of Rirg. 
Therefore Rr is injective. In a similar fashion since S is 
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torsion free with respect to the hereditary torsion theory 
induced from the trace ideal RtR of R& the self-injectivity 
of S implies 나lat Homs{Rs^ S^)—RtRG—RRG is injective.

(2) Suppose R° is right self-injective. Then by the same 
rea옹on as in (1)5 HomRG(RtRG^ R9rG) = Rs is injective. Hence 
R3 is an iS-direct summand of Ss. Therefore Rs is projective 
and hence M(」R)=Rg.

(3) Let {A^Mod~S\A---- >Homs(RtR, A) : bijective}
and 初?g = {BuMoa-R이B---- B) : bijective}.
Then 必 and 初&g are quotient categories of Mod-S and 
Mod-R9, respectively corresponding to hereditary torsion 
theories induced by trace ideals RtR and tr(R). By Muller 
[7, Theorem 3j, two—functorsT新沔(氏,一) and HomRG 
(R方rG, —) induces equivalences between Ms and 展房、 Let 
A denote quotient functors with respect to hereditary 
torsion theories induced by trace ideals. Then since Homs 
(Rs,S) =Hom$(Rs,S) =RZrG the lattice of j/5-subobject 
of S and j/AG-subobject of RtRG are lattice isomorphic. 
Now to prove (3)； suppose tr(R) =RG. Then every R°- 
submodule of Rirg is j/Ac-subobject. Now assume to the 
contrary that RtRG is not finitely generated. Then there 
is a totally ordered set {Ia} of proper J?G-submodules of

with \JIa — Rt. Hence [HomRC(R9 Ia)} is a totally a
ordered set of right proper j/5-subobject of S. Since HomRG 
(R* U L) — U HomRG{R9 Z), we have U HomRG(R, Ia) =HomRG a a a
(R, Rt) =S. But this is impossible because Ss is finitely 
generated. Therefore RtRG = RRG is finitely generated.

A ring R is called G~Galois extension of Rc if there a호e
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element옹 %,鬼,…사% …, an* in R such 난lat 工 
. z=g

=8顷 for all g in G, where 8 is the Kronecker delta.

S. U. Chase, D. K. Harrison and A. Rosenberg [2J have 
shown that R is a G-Galois extension of RG if and only if 

is a finitely generated projective 7?3-module and the map 
j from RG to EndR3(R) defined by j(^g) (y) =xy? for x9 
:y i교 R and g in G is a ring isomorphism.

Theorem 3.14. If A is a von Neumann regular selfinjec- 
tive ring and G is ^-outer, then

(1) -R is a G-Galois extension of RG.
(2) Rrg is injective.

Proof: If I is an essential right ideal of RG, then IR is 
an essential right ideal of R because G is X-oute호 and R 
is regular, self-injective. Hence RG is nonsingular. Since 
〈S’ R, Rt、RG) is nondegenerate, the nonsingularity of RG 
implies those of S=RG, Rs and RiRG. So S is regular 
Since Rs is finitely generated, Rs is projective and hence 
tr(R) =RG. Therefore by Lemma 3.8, RrG is finitely ge
nerated. On the other ha교d, since is semi-prime, it is 
nonsingular and self-injective. Now since <S, R, Rt> R，〉 
is right normalized, R is a G-Galois extension of RG.

(2) Since Rr is injective by Lemma 3.13, so is RRGt
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