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GALOIS SUBRINGS OF UTUMI RINGS
OF QUOTIENTS

CHoL Ho Um

1. Introduction

For the Galois theory of semiprime rings the importance
of crossed products was firstly noticed by T. Nakayama in
[8]. Adfter his proving the -bemutiful mormal basis theorem
crossed product has greatly influenced to Galois theory.
But still at his time there was no systematic scheme between
crossed products and Galois subrings. M. Cohen [3] success-
fully provided a systematic “Morita context” between them
by the hint of Chase, Harrison and Rosenberg. But actually
J. Osterburg and J. Park pointed out that her context is
the derived context of some of module,

As J. Osterburg and J. Park did in (9] we consider crossed
products and Galois subrings altogether at the same time via
the drived Morita context. Indeed we prove that the Utumi
quotient ring of Galois subring is the Galois subring of the
Utumi quotient ring in different way. Also we consider the
normal basis theorem for regular self-injective ring case.
By our normal basis theorem we can generalize M. Cohen’s
result [3] for the semi-simple artinian ring case. Some our

results in this paper were alrealy proved in {9].
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2. Preliminaries

In this section some necessary definitions and properties
will be given. All rings are assumed to have identity ele-
ment. R denotes a ring and all modules are right R-modu-
les, unless otherwise mentioned.

DerFINITION 2.1. A Morita context consists of two rings
R and S, two bimodules sP; and y@Qs, and two bimodule
homomorphisms (called the pairings)

(,): Q@;P_"'R

and
[,1: PREQ — S
satisfyiny the assocrativity conditioms ¢{p; ¢ 1={(g;P) ¢’ amd
(g, ") =12, q1p".
The images of the pairings are called the trace ideals of
the context, and are denoted by T, and T We abbreviate
a context by the symbol (P, Q.

For any R-module Py let P*¥=Hom(Ps Rp) and S=End
(Pz). Then P* is a right S and left R-bimodule. Define
pairings (, ) and [, ] as follows; (, ): P*®R;P—R by
(f, p) =f(p) and [, 11 PRQ.P*——S by [p, f1(x) =pf(x)
for  in P. Then it can be easily checked that (R, P, P*,
S) is a Morita context between R and S. This particular
context is called the derived Morita context of Pp, For the
left module case, we can define the derived Morita context
similarly.

EXAMPLE 2.2. From two module X, and T, define

R=End, (X), S=End, (Y),
P=Hom,(X,Y), and @Q=Hom,(Y, X)
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with pairings by composition. Then (P, &) is the Morita
context of two rings R and S.

ExampLE 2.3, Let (A, B, P,Q,a,8) be a Morita context.
Define the generalized matrix ring

R:{— A P -L
- Q B -4
a,8 by using ordinary matrix addition and multiplication by
means of « and 8. Then R is actually a ring.

Put o= 1 ¢ 1'
L 0 0 J
Then A=ceRe, B=((—-eR(1—e),

P=rsR(1—-¢), @Q=(1—¢)Re.
In general R is an arbitary riny with an idempotent e,

then (¢Re, (1—¢)R(1—¢), eR(1—e), (1—e)Re, a, ) is a
Morita context for snitable «, g.

Associated with any Morita context (P, @) there are eight
nat iral maps, e.g., pEP—[p, —1<=Q*=Hom(Q, End(P))

and r&ER—(qg—rg): Ends(Q), where Q=Homy(P, R) and
S=End (P).

DeriNiTION 2.4, The context (P, @) is called non-dege-
nerate if all these natural maps are injective.

DEFINITION 2.5. A Morita context is right normalized if
the four natural maps P-Q*, Q-P* R=Endy(Q) and S—
End,(P) are isomorphisms,

THEOREM 2.6 [7, Theorem 19]. If a Morita context (P,
@) between two rings R and S is nondegenerated, then the
maximal quotient Morita context (P, @) between Q,,,(R)
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and Quax(S) induced by (P, @) is right normalized.

Let A be a finite dimensional central simple algebra over
its center field F. Then A has a maximal subfield K. If K
is a Galois extension of F with a Galois group G then there
are invertible elements {q,: g in G} of A such that A=@Ka,,
a direct sum of left K-vector spaces, where for all x in
K, za,=a,g(x)}. Moreover defining ¢(g, h)=a,a,a; for
each g, 2 in G, we have (g, k) is in K and the following
equations hold for all g, A, % in G:

t(g, h)t(gh, k) =t(h, k)t(g, &).

By this fact we define a crossed product formally as
Totlows.

DeEFINITION 2.7. Let R bea ring and G be a group. Given
a group homomorphism p:G—Aut(R) and a map £:GxXG—
U(R) the units of R such that

ey t(x, »t(zy, 2)=t(y, 2)*7t(x, yz)

and

(2) t(x, y)a“’”:a“‘”‘”t(x, y)
for all #, ¥, 2 in G and @ in R. We define the crossed
product R*G to be the set of all formal sums of the form
Na.x with a, in R and @,=0 for almost all x in G. The
addition in R*G is defined componentwise and the multipli-

cation is given by the rule

(a.%) (a,5) =a.a}"t(z, y)Ty.

This makes R*G an associative ring with identity £(1, 1)7'1.
When £(x, y)=1 for every x, ¥ in G, the crossed product
is called a skew group ring and denoted by RG.
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ExampLE 2.8, Let G be a finite group of automorphisms
of a field F. Then the skew group ring FG is the axa

matrix ring over the fixed field F¢, where n is the order
of G.

We set some notations and basic definitions. Let G be a
group of automorphisms acting on R. By ¢ we mean the
image of 7 under g in G. The fixed ring of R is Ré={r
in R [7¢=7r for all g in G}. The trace of x is ir(z)=
2 xt. Note that £7(x) is in R° An ideal L(left or two sided)
of R is called G-invariant if L# is contained in L for all g
in G. The rinz R is said to have no |G|-torsion if [G|r=0
for r in R implies that r=0. If % is a Gabriel filter on R,
then #(Ry) is the set of all @ in R whose right annihilator

is a member of ¥ and is called the torsion submodule of
Ry with respect to 7.

3. Main Results

When G is a finite group of automorphisms of R we can
form a skew group ring S=RG over R.

For a given Gabriel filter ¥ on R, ¥$={Lw,RG|DNR
is in ¥} is a Gabriel filter on RG by K. Louden [6,
Lemma 8].

We recall that ¢(Rg) is the torsion submodule of Ry with
respect to F, t(Syp) is the torsion submodule of S; with
respect to F and #(Ss) is the torsion submodule of S5 with
respect to %. Then we can obtain £(R)S=#(Ss) and #(Sg)
=¢(S;). Furthermore 2(R;)=#(Sp)NR. We call that 7 is

a G-invariant (or an automorphism invariant) if I* is an
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element of ¥ for all Tin %, gin G.

LeMMA 3.1. If F is an automorphism invariant, then every
automorphism of R can be extended to an automorphism

of Q(R).

Proor. Let ¢(R) be the torsion submodule of R with
respect to ¥. Since % is an automorphism invariant,
g(Z(R))=t(R) for all g in Aut (R). Let f be an R-homo-
morphism from D to R/t(R) which represents an element of
Q(R). Define g(f) from g(D) to R/t(R) by g( f) (g(d))
=g( f(d)) ford in D. Then g( f{(R))=t(R)g( f) is well-
defined. For, if f(d,)=f(d,) for f(d)), f(d,) in R/:(R).
Put f(d))=r+2(R) and f(d,)=r,+t(R) for 7, 7, in R.
Since 7, +t(R)=r,+2(R) we have r,—r, is in £( R) and hence
glry—ry) is in2(R). It follows that g( f(d,))=g(f(d:)).
Therefore g( f)(g(d\))=g(f)(g(d2)) which completes the
well-definedness. Next we show that g(f) is a2 homom-
orphism. Since g( f )(g(d))+g(d))=g( f Mg(d,+d2))=
g(f(di+d))y=g(f @)+ f(d:))=g(f (@ +g([f(d:))=
g(gld)+g(fHgld,y) and g( f ) gld)r)=g(f ) (gldr))
=g(f(dir))=g( f(d)r)=g( Ad))r=g(f)(g(d,))r for all
g(d), g(d,) in g(D) and » in R. Thus g( f) is a homom-
orphism and this defines g on @(R) to be an automorphism.

By Lemma 3.1, if F is a G-invariant filter, then G can
be considered as an automorphism group on Q@s(R). Let [¢]
be in @5(R) which is represented by g: D —R/t(R) with D
in #. Define g: DS—S/t(S) by g(Xd,g)=2Xq(d,)g. Then
since R/t(R) is contained in S/¢(Sz) and #(Sp)=£(Ss), §
is well-defined and an S-homomorphism and g|D=¢ with
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DS in F. Let [g] be in @5(S) represented by this map 7.
For any g in G, the left multiplication L,:.S¢——Ss induces
an S-homomorphism L,:S/t(S5)—S/2(Ss). So L.g: DS
——S/t(S;s) represents an element [L;g] in @5(S).

THEOREM 3.2. Let G be a finite group of automorphisms
of R and S=RG. Then for a G-invariant filter ¥ on R,
Q»(R)G is isomorphic to @7(S).

Proor. Define f: @7 (R)G—Q3(S) by f(Zgle.i)=
YiL.g,). We divide the proof into five steps.

Step 1. We show that f is well-defined.

If Sglgl=Yglw,?, then [g,i=[w,] for all g iw G. Thus
there exists D, in ¥ such that g, and w, are coincided on
D, for all g in G. Therefore for all g in G, g, and @, agree
on D,S and DS is in #. So for all g in G, L,3,=L,w,
on D,S. Hence [L,g,]=[L,®,] for all g in G. Consequently
S(L,33=30L®,). Hence f(Zglg,)) = f(Lglw,)) and
therefore f is well-defined.

SteP 2. We show that f is additive.

Since [L,1(g,)=[L,q,} and [g,+w,}=(g,)+[®,), we ha-
ve following:

S (Zeled+glw, = (Zg(lg3+ 7))
=f(Zelg,+w,D=LlL(q,+w,)]=%{L,ilq,+w,]
=%[LI(1g)+w,)=5[L10g,1+5LL,0%,]
=L(L g +20L®,)=f(Lglg )+ f(Tglw,]).

Hence f is additive.

Step 3. We show that f is a homomorphism.
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Choose glg,] and Alw,] in Q#(R)G with ¢,:D,——R/t(R)
and w,: D,—R/t(R) for g, h in G. Then we have g[g,]
hlw,i=ghlq,J*[w,]. Let [x]=[q,]* Then [x] is represe-
nted by z:D*—R/t(R); z(d*)=q,(d)* for d; in D,. So
gl Jhlw,i=ghlzl{w,]. Let y=[(zw,]. Then [y] is re-
presented by y; wh—l(Dlh/t(le))"%le/t(olh)_{'R/t (R),

where ¥ is the induced R-homomorphism from z. Hence
S (glgdhlw;))=f (ghlyl)=[L,¥»] is represented by .S-

y L
homomorphism: w;,‘l(Dl"/t(Dl"))Si S/t(S)=E.S/t(S).
On the other hand, f(glg,)f (hlwi1)=[L,q,1(L.®,] is
represented by the composition; @, 12" 1(D,S/£(D,S)) 2

L (DuS/e(D18)) 22 D,8/1(D,S) G5 57105y 22.5/6(S) where

g, is the induced map from g,. In this case &2°1(D,S/¢(D,S))
=D*S/e(DAS) and @, L, (D1 S/e(D1S ) =w, 1 (D*S/t
(D*S))=w), ™t (D*/t(D*))S. Let Dy=w, (D" /(D).

Then ford in Djand % in G, (Eg,,ji) @ry=L,(y(d)k) =
Lay(@k=L,[%w,(d)1k. Let w,(d)=d*+£(D*) with d,
in D, Then Zga[f‘wh(d)]k—fzgh[f (@) +t(DM) k=L ulx(d*)]
k=I:ghfgg(dl)"]k=Zg[qg(d1)]hk. And we have (L,3,L.w,)
(@R)=(L,3,L;) (wi(d)k) = (LG L) (dy+e(D)k = (L,3,)
(hd*k+¢(S))= (L,4,) (dh2+i(S)) = L (g,(d)hk) = L,lqg,
(d\)1hk. Hence f(glq3hlw,])=f (glq,1)f(hlw,]). There-

fore f is a homomorphism.
Step 4. We show that f is one to one.

Suppose [XL,5,]1=0 with 3,:D,S——S with D, in ¥, g
in G. Then X(L,3,] is represented by the S-homomor-
phism: N (D,S)—S/¢(S); xi—— L L,(g,(x)). Since niL.g,]
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=0, there exists a G-invariant D, in ¥ such that DyS is
contained in N(D,S) and L, (g, (x))=0 on D,S. Now for
every dqy in D, 0=L,(g,(dy)) =X L, (g, (dy)). Let g, (do)=
r.+t(Rp) with 7, in R. Then O:ng(qg(do)):Zfzg(rﬁ
HRN =X L(r,4t(8)) = T (gr,+1(S)) = (T r'g) +(3).
Hence Y72 !g is a element of £(S)=¢(R)S. So for all g in
G, r2 ! is contained in £(R). Hence r, is a element of £(RK)
for all g in G. Therefore g,(dp)=7,+t(R)=0 for all g in
G and d, in D, Hence ¢,=0 on D,

Therefore [¢,1=0 and so Y g[g,1=0. Hence Ker f={0}.
Thus f is 1—1.

STEP 5. We show that f is onto.

Let [23=0#(S) represented by x: DS——S/2(S) with D
in . Let pbe a map from S/2(S) to R/t(R) defined by
PErRH(S)) =7, +1(R) for all g in G. Since t(RxS=
£(S)), p is well-defined and an R-homomorphism.

Dp — Xy 5/t(8) d m—— r(d)g + £(S)
P
pPX
v
-2y 9
R/t (R} Tla) g+ t(Rp)

where r(d), is a element of R for all 2 in G. Thus px is
an R-homomorphism: D,—R/t(R). We will show that
x1=3T1L, px1=f(Zglpx]). N{L, px1 is represented by DS
~—sS/t(S); y— N L [(px)(y)]. Now for d in D and % in
G; DL, p2(dh)1=S L(T( px) (d)Ih) = (L[ (px) (d) Nh=
SLir(d)s+t(R)1h=X L (r(d)# + t(SHh = T (gr(d) +t
(SHh=X (r(d),g+t(SNh=X (r(d) ,+£(S))gh and z(dh)=
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x(d)h=X (r(d),g+t(S))h = Z]gr(d)gnht(S))gk. Hence [x]
=XI[L,px]1=Ff(Xg(px]). Thus f is onto. Resultly f is an
isomorphism. Thus Q4(R)G is isomorphic to &z(S).

An overring S of a ring R with same identity is called a
finite normalizing extension ring of R if S is finitely

generated as an R-module by elements which normalize R,
that is, S=J, Rz, with Rz,=z,R for each i.
=1

For example, it includes crossed product RxG with a finite
group G.

LEMMA 3.3 (5, Theorem 3.2]. If S=3 z,R is a finite

‘5
normalizing extension of R with X, =1z=1;, then for M
Mod-R, Homy(Sg Mz) is an injective S-module if and only
if M is an injective R-module.

-

Immediately by the above Lemma we can get Homs(Sg,
Er(R))=E(Homgp(Sg, Rr)).

LEMMA 3.4, Let S=RG be a skew group ring with a
finite group G, and let ¥ be the Lambek topology (or

topolozy) on R. Then 7 =[Iw,RG:INREF} isthe Lambek
topolozy on RG.

ProoF. By the above Lemma 3.3, we have Homp(RG,
E(R)g)=Homp;(Homz(RG, Rg))=E(RG)z. Since E(R)p is
an injective cogenerator, Homz(RG, E(R))=E(RG)x 1s
an injective cogenerator by K. Louden [6, Proposition 4],
Therefore F is also a2 Gabriel filter on RG.

COROLLARY 3.5. @uax(R)G is isomorphic to @ney(RG).
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PrOoF. Define f: @nax(R)G—Qm:x(RG) by f(Zgle,l) =
ZlL.q,]0.

Step 1. f is well-defined.

It is obvious that X [L,7,] is in Quex(S). Now if Lglg,]
=2glw,] with [q,], (w,] in @uex{R). Then we can obtain
Lgel=[w,] for all g in G. Therefore there exists D, in
F such that ¢ |D,=w,D, for all g in G. Thus we have
gD, S=%,\D,S and DS in F by Lemma 3.4 for all g in
G. Hence L,g,\D,S=L,w,D,S for all g in G. Therefore
we have [L,g,1=[L,@,] for all g in G. Consequently,
f(Zgle ) =0(L,g)=L(L@]=f(Tglw,]). Thus f is
well-defined.

Ster 2. f is additive.

Since [L,] (7,1={L,3,] and {g,+w,/]=[q,1+0@,1, fis
clearly additive.

STEP 3. f is a homomorphism.

Suppose f(glg,1)=[L,4,] with g, D;——R, and f(hlw,])
=[L,&,] with w,:D,—>R, Then f(glq,] hlw,1)= f(ghlq,l"
[w,]). Let [#1="[q,]% Then [u] is represented by u: D*—
Ry u(d\)=q,(d)* for d, in D;, So f(glq,lhlw,])=f(gh
Lallw,]). Let [v]={#)lw,] and let D;=zw,"3(D*). Then

7,

v:D, »Dl—g-»RR represents [v). So f(glg.hlw,])=Ff(L,

5 I )
v ={L,7], Dg—?i»Ss-—{fSS_ Now for f(glg,)f(Alw,1)=
{L,3,] LL,#,) is represented by the composition; =z, 1L,"!
(D, 2L, 1(D,S) LD, S T8, B8, In this case Ll

(D]_S) :leS and Zh_l(Lh—l(DLS)):I_zhdl(dth)Zthl(Dih)S
=0,5. Now for d%k in D,S with d in D; and % in G;
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(Lp®) (BR)=gh(v(d)k)=gh u(w,(d))k=gh ul(w,(d)* )"k
=ghl g, (w,(d)" N k=gl q,(wy(d)" ) IRk,

On the other hand (L,q,L:%,)(d?)=(L,q,L,)(w,(d)k)=
(L,3,) (hew(d)R) = (L,4,) (wi(d)* 'hE) = L, (g, (w,(d)* 'hE))
=g8(q,(wi(@) Yhk) = g(g,(wi(d)* ")) hk. Hence L,o|D,S=
L,g,L,w,\D,S. Therefore

f(glgdblw,]) = f(glq,) f(hlw,).

So f is a homomorphism.

STEP 4. f is one to one.

Suppose L [L,7,1=0 with §,:D,S;— Ss. Then X[L,3,)
is represented by S-homomorphism;

N (D, S)—8s.
x—5g(q,(x)).

Since >,{L,7,1=0, there exists G-invariant D, in ¥ and
DSSN(D,S) such that X, g(F,(x))=0 for all z in D,S.
Now for dy in Dy, 0=X g(7,(dy))=Xq,(ds)*'g. Hence g,
(dy)¢ =0 and so ¢,(d,)=0 for all g inG and d, in D, So
g,=0 on Dy ¢,=0 on D, for all g in G. So [¢,]=0. Hence
we have Y glg,)=0for all g in G. Therefore Kerf={0}.

Thus f is one to one.

x

STEP 5. f is onto. Pg 7 SR

]

Let [x} be element of @ae:(S) ‘
represented by z: DS;—S; with D 3% Lp
in 3"*'. RR

Define P: SR_"RR bY P(Zrhh)
=7, for all g in G.
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Then p is an R-homomorphism. So x(d)=X[(px)(d)}¢ 'g
for all d in D. So [px] in @pa:(R) represented by pzx:
DE_’RR.

Cramm. [x]=3[L,p%x]

LIL,px] is represented by the S-homomorphism; DS
— S5 i—-Xg( px(y)). Now for d in D and A in G, =
(dhy=x(d)h= X [(px) (d)1*"'gh and g ( px (dh)) = Xg
[(px)(d)R]=(Zg (px) (d)h = T [( px) (d)1* 'gh. Hence
[x]=X1L, px]=f(Xg [ px]) with Kgl[ px] in Quax(R)G.
Hence f is onto. Resultly f is an isomorphism. Thus
@rex(R)G is isomorphic to Quar (RG).

Por a fimite growp G of amtomorphisms-of a semiprime
ring R, let t=3 g and S=RG. We note tR is a bi R°— S
module, the right action of S being ¢rXr,g=Xt(rr,)% The
left action of R® is clear. Also R is a bi S—R® module,
where N7,gr=Xr 7" In this case to consider the derived
Morita context of the left S-module R, we note that Hom
(sR, sR)=R¢ and Hom( R, S)=:tR.

LEMMA 3.6. The derived Morita context of (R is (S,
sRp8, zstR: R°), where pairings are (, ): tR®;R-RC,
(ta, b)=tr(ab) and [, ]: R®ct R—S: [a, thl=ath.

Proor. Let p: tR— Hom(sR, S) by p(r)=f, where
J(@)=tr. Then Hom(;R, S)=tR. And let ¢:R°—— Hom(sR,
sR) by g(r)=g, where g(#)=r for all r in R. Then Hom
(sR, sR)=RE. Since tcla, tbl=tclatb)=3 gclath) =7, (gca)
th=73] (ca) stb=tr(ca)tb=(tc, a) th, and {a, thlc=(ath)c=a
(the) =a( X gbc) =a(X (b)) =atr(bc) =a(th, ).
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Therefore (S, sRye, pc?Rs, R°) is the derived Morita con-
text of g R.

Now we prove the result of [8, Theorem 2] differently.

THEOREM 3.7. If the derived Morita context (S, sRgg,
gt s, R%) in nondegenerate, then Qn.: (R)°=Qn.x(R).

Proor. Since (S, sRys,pctRs,RE) is nondenerate, (@nax(S),
Q(Rpe)s QxetRs), Quax(RE)) is right normalized by Theorem
2.6. By Corollary 3.4 and Theorem 3.2, Quax(S)=@nax(R)
G and Q(sR) is the left quotient module @u.x(R) over the
ring @maz(S). So we have Quax(RE)=Homyq,, «(@(R),
Q(sR)) and Homy,, 06 (Qnax(R), @nax(R)) =Quax (R)°.

As is elementary and well known, one can imbed a commu-
tative integral domain in a field, being nothing else than
the fractions created from the elements of the domain. O,
Ore gave the appropriate conditions in order that this be
possible for noncommutative rings without zero divisors.
We shall give an account of this rather, more general sit-
uation below. But first a few definition are needed,

DEerFINITION 3.8, An element in a ring R is said to be re-
gular if it is neither a left nor right zero divisor in R.

DErFINITION 3.9. An extension ring @(R) of R is said to
be a left quotient ring for R if:

1. every regular element in R is invertible in @(R).

2. every x=Q(R) is of the form z=a"'% where a, &R

and @ is regular.

If Q(R) is a left quotient ring of R we say that R is
left order in @(R). In any ring R, for a nonempty subset
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Sof Rlet I{(S)y={z€R:xs=0for all s&85}. Wecall I(S) the
left annihilator of S and term a left ideal X of R a left
annihilator if A=/(S) for some appropriate S in R. We
similarly define the right annihilator »(S) of S and speak
of a right ideal as a right annihilator.

DerINITION 3.10. A ring R is said to be a (left) Goldie
ring if:

1. R satisfies the ascending chain condition on left
annihilators,

2. R contains no infinite direct sums of left ideals.

Clearly a left Noetherian ring, that is, one satisfying the
astending chain condition on left ideals is a Goldie ring. A
ring R is said to be semiprime if it has no nonzero nilpo-
tent ideals.

THEOREM 3. 11 [Goldie]. Let R be a semiprime left Goldie
ring. Then R has a left gquotient ring Q=Q(R) which is
semisimple artinian.

There has been a great deal of interest in group of outer
automorphism, i.e., automorphism g for which there does
not exist a unit = such that r#=w«"'ru for all  in R. Let
R be a semiprime riny with a finite group G of ring auto-
morphisms of R. Let S denote the ring of quotients of R
relative to the Gabriel filter which consists of all two sided
ideals whose annihilator is 0. An automorphism g is
called X-outer if sr*=7s for an 5 in S and for all » in R
implies that s=0. The group is called X-outer if each g
(g#1) in G is X-outer.
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CoroLLARY 3.12 [S. Montgomery]. If R is semiprime
ring and a finite group G of ring automorphism of R is X-
outer. Then R is right Goldie if and only if R® is right
Goldie.

Proor. If R is right Goldie, then Q@ua.x(R) is semi-simple
Artinian and G acts on Qu.,(R) as X-outer. So G is com-
pletely outer on Qu.x(R) and hence Quax(R)°=Qn.-(R%) is
semi-simple Artinian. Thus R is semiprime right Goldie.

Conversely, suppose R is right Goldie. Then since the
context (S, R, Rt, R°) is nondegenerate, RC is semiprime
and hence Q@u.x (R%) =Qpax(R)® is semisimple Artinian. Now
by Amitsur [1], Muller {7] and Theorem 3.2, the maximal
quotient context (Qna: (R)G, Quiz(R), Quac(R)E. Qumax(R)%
is also nondezenerate and hence Quax(R )Moy, )¢ = Quax
(R )ouaytw has finite Goldie dimension. Hence Quex(R) is
finitely generated over @nax(R)® and so @uax(R) is Artinian.
From the nondezeneracy of the maximal quotient context, the
semi-primitivity of @Qnax(R)G follows from &Qu.,(R)¢ and
§0 Qua(R) is semiprimitive. Hence R is right Goldie.

LeMMA 3.13. If R is a right rationally complete, semi-
prime ring and (8, R, R¢, R°) is nondegenerate. Then

(1> R is right self-injective iff R,; in injective.

(2) If RC is right self-injective then ¢r(R)=RC.

(3) If ¢r(R)=R° then R, is finitely generated.

Proor. (1) Suppose Ry, is injective. Then Hom,:(R, R)
=S is injective because R,; is torsion free with respect to
torsion theory induced from the trace ideal ¢r(R) of Rty
Therefore R; is injective. In a similar fashion since S is
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torsion free with respect to the hereditary torsion theory
induced from the trace ideal R¢R of Rj the self-injectivity
of S implies that Homs(Rs Ss)=Rt=Ry is injective.

(2) Suppose R€ is right self-injective. Then by the same
reason as in (1), Homyo(Re s R 0)=Rj is injective. Hence
R; is an S-direct summand of S;, Therefore R; is projective
and hence £7(R)=RC,

(3) Let o s={A=Mod-S|A—Homs(RtR, A) : bijective}
and ;¢ = {BEMod-R°|B——Hom,(tr(R), B) : bijective},
Then of s and of 6 are quotient categories of Mod-S and
Mod-R?, respectively corresponding to hereditary torsion
theories induced by trace ideals RtR and zr(R). By Muller
{7, Theorem 3], twofunctors Homs(Ks,—) and Homye
(Rtge, —) induces equivalences between gfs and ofz6. Let
A denote quotient functors with respect to hereditary
torsion theories induced by trace ideals. Then since Homg
(Rs,S)=Hom;(R;,S)=Rtze the lattice of fs-subobject
of S and yf:6-subobject of Ri,; are lattice isomorphic,
Now to prove (3); suppose tr(R)=R¢ Then every KR°-
submodule of Ri,; is gf;6-subobject. Now assume to the
contrary that Rf,; is not finitely generated. Then there
is a totally ordered set {I.} of proper RC¢-submodules of
Rt,. with U‘f.:Rt. Hence {Hom (R, I.)} is a totally

ordered set of right proper of s-subobject of S. Since Hom
(R, UZL)=U Hom (R, I), we have U Hom (R, I,) =Homy

(R, Rz)=S. But this is impossible because S; is finitely
generated. Therefore Rt =R, is finitely generated.

A ring R is called G-Galois extension of R° if there are
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k()
elements a,,a, - a,, a)*, a*, -, a,% in R such that 2] a,a*¢
- =q

=0,,, for all g in G, where 8 is the Kronecker delta.

S.U. Chase, D.K. Harrison and A. Rosenberg [2] have
shown that R is a G-Galois extension of RS if and only if
R is a finitely generated projective R°-module and the map
J from RG to End, (R) defined by j(zg)(y)=xy* for z,
v in R and g in G is a rinz isomorphism.

THeorREM 3.14. If R is a von Neumann regular selfinjec-
tive ring and G is X-outer, then

(1) R is a G-Galois extension of R,
(2) R,; is injective.

J

ProoF: 1f 7 is an essential right ideal of R¢, then IR is
an essential rizht ideal of R because G is X-outer and R
is regular, self-injective. Hence R® is nonsingular. Since
(S, R, Rt, R°) is nondegenerate, the nonsingularity of RS
implies those of S=RG, R; and Rty So S is rezular.
Since R is {initely generated, R is projective and hence
tr(R)=R® Therefore by Lemma 3.8, R,; is finitely ge-
nerated. On the other hand, since R* is semi-prime, it is
nonsingular and self-injective. Now since (S, R, Rz, R
is right normalized, R is a G-Galois extension of R,

(2) Since Ry is injective by Lemma 3.13, so is R,
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