FIXED POINTS FOR FAMILY OF MAPPINGS*

S. L. SINGH AND ARORA VIRENDRA

Common fixed point theorems for family of mappings on 2-metric spaces (Gähler 1963/64) have been established among others by Lal-Singh (1978), Rhoades (1979), Singh (1979), Ram (1982) & Cho (1985). Ram (1982) established the following result:

THEOREM 1. Let $\{S_n\}$ be a sequence of mappings from a complete 2-metric space X to itself. Let T be a continuous mapping from X to itself such that T and S_n commute and $S_n(X) \subseteq T(X)$, $n=1,2,3\cdots$. If there exists a positive number q<1 such that for every pair i,j, $i\neq j$,

(1.1)
$$d(S,x, S,y, a) \leq q. \max \{d(Tx, Ty, a), d(S,x, Tx, a), d(S,y, Ty, a), \frac{1}{2} [d(S,x, Ty, a) + d(S,y, Tx, a)] \}$$

for all x, y, a in X, then T and the sequence $\{S_n\}$ of mappings have a unique common fixed point. We prove the following:

^{*} The intent of this paper is to offer common fixed point theorems for a countable family of mappings on 2-metric spaces.

AMS(MOS) Subject Classifications (1980) 54H25, 54E99.

THEOREM 2. Let $\{S_n\}$ be a sequence of mappings from a 2-metric space X to itself. Let T be a mapping from X to itself such that

- (2.1) $S_n(X) \subseteq T(X), n=1,2,3\cdots,$
- (2.2) T(X) is a complete subspace of X.

If there exists a positive number q < 1 such that for every pair $i, j, i \neq j$, the condition (1.1) holds, then T and $S_n(n = 1, 2, 3, \cdots)$ have a coincidence point, i.e. there exists a point z such that

$$Tz = S_n z, n = 1, 2, 3, \dots$$

Further, if T and S_n , $n=1,2,3,\cdots$, commute at z then T and S_n , $n=1,2,3\cdots$, have a unique common fixed point. Indeed Tz is the unique common fixed point.

PROOF. Pick x_0 in X. Construct a sequence $\{Tx_n\}$ such that $Tx_n=S_nx_{n-1}$, $n=1,2,3\cdots$. We can do this since $S_n(X)\subseteq T(X)$. By (1,1),

$$d(Tx_{n+1}, Tx_n, a) = d(S_{n+1}x_n, S_nx_{n-1}, a)$$

$$\leq q. \max \left\{ d(Tx_n, Tx_{r-1}, a), d(S_{n+1}x_n, Tx_n, a), d(S_nx_{n-1}, Tx_{n-1}, a), d(S_nx_{n-1}, Tx_{n-1}, a), d(S_nx_{n-1}, Tx_n, a), d(S_nx_{n-1}, Tx_n, a) \right\}$$

$$= q. \max \left\{ d(Tx_r, Tx_n, a), d(Tx_{n+1}, Tx_n, a), d(Tx_n, Tx_{n-1}, a), d(Tx_n, Tx_{n-1}, a), d(Tx_n, Tx_{n-1}, a), d(Tx_n, Tx_n, a),$$

giving

$$d(Tx_{n+1}, Tx_{n}, a) \leq q. \max \left\{ d(Tx_{n}, Tx_{n-1}, a), \frac{1}{2} d(Tx_{n+1}, Tx_{n-1}, a) \right\},$$

and also

$$d(Tx_{n+1}, Tx_n, Tx_{n-1}) = 0.$$

Now, as in (Ram 1982 or Singh-Tiwari-Gupta 1980), it can be shown that $\{Tx_n\}$ is a Cauchy sequence. Since T(X) is complete, it has a limit in T(X). Call it p. Then there exists a point z in X which is a pre-image of p under T, that is Tz=p.

Now, for any n, m, n > m by (1.1),

$$\begin{split} d(S_{n}x_{n-1}, & S_{m}z, & a) \leq q. \max \left\{ d(Tx_{n-1}, Tz, a), \\ & d(S_{n}x_{n-1}, Tx_{n-1}, a), \\ & d(S_{m}z, Tz, a), \\ & \frac{1}{2} [d(S_{n}x_{n-1}, Tz, a) \\ & + d(S_{m}z, Tx_{n-1}, a)] \right\} \\ = q. \max \left\{ d(Tx_{n-1}, Tz, a), 0, \\ & d(S_{m}z, Tz, a), \\ & \frac{1}{2} [d(Tx_{n}, Tz, a) \\ & + d(S_{m}z, Tx_{n-1}, a)] \right\}. \end{split}$$

Making $n \rightarrow \infty$, we obtain

$$d(Tz, S_mz, a) \leq q \cdot d(S_mz, Tz, a).$$

Since a is arbitrary,

$$Tz = S_m z$$
.

This is true for any m. Hence z is a coincidence point of

T and $S_{i, i=1, 2, 3\cdots}$.

Now assume that T and S_i , for each i, commute at z i.e.,

$$TS_iz = S_iTz, i=1,2,3,...$$

Also

$$TS_iz = S_iTz = S_iS_jz = S_iS_iz$$
.

Then by (1.1), for $m \neq n$,

$$d(S_{n}z, S_{n}S_{n}z, a) = d(S_{n}z, S_{n}S_{n}z, a)$$

$$= d(S_{n}z, S_{n}S_{n}z, a)$$

$$\leq q. \max \{d(Tz, TS_{n}z, a), d(S_{n}z, Tz, a), d(S_{n}z, TS_{n}z, a), d(S_{n}S_{n}z, TS_{n}z, a), d(S_{n}z, TS_{n}z, a), d(S_{n}z, TS_{n}z, a), d(S_{n}z, TS_{n}z, a), d(S_{n}z, TS_{n}z, a),$$

yielding

$$S_n S_n z = S_n z = T z.$$

So Tz is a fixed point of S_n for every n, naturally. Also, since $TTz = TS_nz = S_nTz = S_nS_nz = S_nz = Tz$, Tz is a fixed point of T. Thus Tz is a fixed point of T and the family $\{S_n\}$. The uniqueness of the common fixed point follows easily.

COROLLARY 3. Let T_1 , T_2 and T be mappings from a 2-metric space X to itself such that $T_1(X) \cup T_2(X) \subseteq T(X)$, and for every x, y, a in X

(3.1)
$$d(T_1x, T_2y, a) \le q \cdot \max \{ d(Tx, Ty, a), d(T_1x, Tx, a), \}$$

$$d(T_2y, Ty, a),$$

$$\frac{1}{2}[d(T_1x, Ty, a)$$

$$+d(T_2y, Tx, a)].$$

If T(X) is a complete subspace of X, then T_1 , T_2 and T have a coincidence point z. Further if T commutes with each of T_1 and T_2 at z then T, T_1 and T_2 have a common unique fixed point. Indeed Tz is the unique common fixed point.

PROOF. The consequences are immediate if one takes $\{S_n\}$ = $\{T_1, T_2, T_1, T_2, T_1, \cdots\}$ in Theorem 2.

REMARK 4. Corollary 3 improves a number of fixed point theorems for two and three mappings on 1-metric and 2-metric spaces (See, for instance, Singh-Tiwari-Gupta 1980, Singh 1982, Singh-Pant 1983, Singh-Mishra 1983).

As a variant of Theorem 2, we have the following:

THEOREM 5. Let $\{S_n\}$ be a sequence of mappings from a 2-metric space X to itself. Let T be a mapping from X to X satisfying (2.1) and (2.2). If there is a non-negative integer m_i for each S_i such that for all x, y, a of X and for every pair i, j with $i \neq j$,

$$d(S_{i}^{m_{i}}x, S_{j}^{m_{j}}y, a) \leq q. \max \left[d(Tx, Ty, a), d(S_{i}^{m_{i}}x, Tx, a), d(S_{j}^{m_{j}}y, Ty, a), \frac{1}{2} [d(S_{i}^{m_{i}}x, Ty, a) + d(S_{j}^{m_{j}}y, Tx, a)] \right]$$

Then T and $S_i^{m_i}(i=1,2,3,\cdots)$ have a coincidence point z. Further if T and $S_i^{m_i}(i=1,2,3,\cdots)$ commute at z then T and the sequence $\{S_n\}$ of mappings have a unique common fixed point.

PROOF. Clearly $S_i^{\pi_i}(X) \subseteq S_i(X) \subseteq T(X)$. Thus Theorem 2 pertains to $S_i^{\pi_i}$ and T. So there is a unique point p in T(X) such that

$$p = Tz = S_i^{m_i}z$$

and

$$S_{i}^{m_{i}}p=Tp=p, i=1,2,3,\cdots$$

From this

$$S_i \not p = S_i S_i^{n_i} \not p = S_i^{n_i} S_i \not p.$$

This shows that $S_i p$ is a fixed point of T and $S_i^{m_i}$. The uniqueness of p implies that

$$p = Sp = S_i p$$
.

REMARK 6. Results of Lal-Singh(1978), Rhoades(1979), Ram(1982) and Singh-Tiwari-Gupta(1980) may be obtained as corollaries. In particular, an improved version of Corollary 1 of Lal-Singh(1978) is obtained when T is an identity mapping in the above theorem.

References

- [1] Y. J. Cho(1985), On existence of fixed points in 2-metric spaces, Pusan Kyongnam Math. J. 1, 81-88.
- [2] S. Gähler (1963/64), 2-metrische Räume und ihre topologische

Struktur, Math. Nachr. 26, 115-148.

- [3] S. N. Lal and A. K. Singh (1978), An analogue of Banach's contraction principle for 2-metric spaces, Bull. Austral. Math. Soc. 18, 137-143.
- [4] B. Ram (1982), Existence of Fixed Points in 2-metric Spaces, D. Phil. Thesis, Garhwal Univ., Srinagar-Garhwal.
- [5] S.L. Singh (1979), Some contractive type principles in 2-metric spaces and applications, Math. Sem. Notes Kobe Univ. 7, 1-11.
- [6] S. L. Singh (1982), Fixed point theorems for commuting mappings, Indian J. Math. 25-26.
- [7] S.L. Singh and S.N. Mishra (1983), Fixed point theorems in uniform spaces, Resultate der Math. 6, 202-206.
- [8] S. L. Singh and B. D. Pant (1983), Fixed point theorems for commuting mappings in probabilistic metric spaces, Honam Math. J. 5, 139-149.
- [9] S. L. Singh, B. M. L. Tiwari and V. K. Gupta (1980), Common fixed points of commuting mappings in 2-metric spaces and an application, Math. Nachr. 95, 293-297.

Gurukul Kangri University Hardwar India

Received May 25, 1986