ON FINITELY GENERATED SEMIPRIME ALGEBRA OVER COMMUTATIVE RINGS

Young In Kwon and Chang Woo Han

1. Introduction

Let R be a commutative ring. E. P. Armendariz studied in [2] that a semiprime finitely generated R-algebra when R is a regular ring and that by combining the above fact with the results of [6, 7], R is semiprime and every f. g. semiprime R-algebra A is Azumaya if the ring R is regular.

In this paper, we prove converse of Armendariz's theorem and we get a necessary and sufficient condition on which a regular ring R is π -regular.

That is, we have the following results;

- 1) Let R be a commutative ring. Then the following are equivalent;
 - i) R is von Neumann regular.
 - ii) R is semiprime and every f.g. semiprime R-algebra is Azumaya.
- 2) Let R be a commutative ring. Then the following are equivalent;
 - i) R is von Neumann regular.
 - ii) Every integral extension of R is π -regular.

An algebra A is called Azumaya if R is both central and

separable. The ring R is said to be P.I. ring if R satisfies a polynomial identity with coefficients in the centroid and at least one coefficient is invertible. All other notations and terminologies will follow from [2] and [4].

2. Preliminaries

Kaplansky made the following conjecture in [4]: A ring R is von Neumann regular if and only if R is semiprime and each prime factor ring of R is von Neumann regular. That the conjecture fails to hold in general was shown by a counter example of J.W. Fisher and R.L. Snider.

THEOREM 2.1 [4]. A ring R is von Neumann regular if and only if R is semiprime, the union of any chain of semiprime ideals of R is a semiprime ideal of R and each prime factor ring of R is von Neumann regular.

Since any finitely generated algebra over a commutative ring satisfies a polynomial identity (is a P. I. -algebra), this leads to consideration of semiprime P. I. -algebra with regular center.

THEOREM 2.2 [2]. Let A be a semiprime finitely generated algebra over a commutative regular ring R. Then A is a regular ring.

The ring R is finitely generated as a ring over its center Z(R), if R is an epimorphic image of a free (non commutative) ring over Z(R) generated by finitely many indeterminates $[x_1, x_2, \dots, x_n]$ which only commute with elements of Z(R). Following C. Proces, the ring R is called an affine ring if R is finitely generated over its center Z(R).

THEOREM 2.3 [7]. Let R be an affine ring. Then the following properties are equivalent;

- 1) Every simple right R-module is injective.
- 2) R is von Neumann regular.
- 3) R is biregular.

THEOREM 2.4[2]. Let A be an algebra over a regular ring with center of A being R. A is Azumaya over R if and only if A is a biregular ring which is finitely generated over R.

Combining Theorems 2.2, 2.3 and 2.4, we have the following result.

THEOREM 2.5 [2]. Let A be a finitely algebra over a regular ring. The following conditions on A are equivalent:

- 1) A is semiprime.
- 2) A is regular.
- 3) A is biregular.
- 4) A is semiprime Azumaya algebra.

The follwing theorem was shown by Storrer.

THEOREM 2.6 [4]. Let R be a P.I. ring. Then the following are equivalent:

- 1) R is π -regular.
- 2) Each prime ideal of R is primitive.
- 3) Each prime ideal of R is maximal.
- 4) R is left (right) π -regular.
- 5) R/rad(R) is π -regular, where rad(R) is prime radical.
- 6) Each prime factor ring of R is von Neumann regular.

3. Main results

LEMMA 3.1. Let R be a commutative prime ring and $0 \neq a$

 $\in R$. If $A = {R \ aR \choose aR \ R}$ is Azumaya, then a is invertible in R.

PROOF. It is easily checked that R coincides with the center Z(A). Now if A is Azumaya, $A \otimes_R A^{op} \cong Hom_R(A, A)$. In this case $\sigma(a \otimes b)$ (x) = axb for $x \in A$.

Consider
$$f \in Hom_R$$
 (A, A) such that $f(\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Then since A is Azumaya, there are $\begin{pmatrix} x_i & ay_i \\ az_i & w_i \end{pmatrix}$ and $\begin{pmatrix} x_i' & ay_i' \\ az_i' & w_i' \end{pmatrix}$ in A, $1 \le i \le n$ for some n such that

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \sum_{i=1}^{n} \begin{pmatrix} x_i & ay_i \\ az_i & w_i \end{pmatrix} \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_i' & ay_i' \\ az_i' & w_i' \end{pmatrix}.$$

By this relation, we have $1 \in a^2R$ and so a is invertible in R.

THEOREM 3.2. Let R be a commutative ring. Then the following are equivalent.

- 1) R is von Neumann regular.
- 2) R is semiprime and every f, g, semiprime R-algebra A is Azumaya.

PROOF. Assume that R is von Neumann regular. By Theorem 2.5, A is Azumaya algebra.

For the opposite direction, let P be a prime ideal of R. We will show that P is a maximal ideal of R. Now, take $a \in R$ and consider an R-algebra $A = \begin{pmatrix} R & aR \\ aR & R \end{pmatrix}$. Then A is a finitely generated semiprime algebra over R. In this case, the center $Z(A) = \left\{ \begin{pmatrix} x & 0 \\ 0 & w \end{pmatrix} \mid (x-w)a = 0 \right\}$. By our assumption, A is separable over Z(A).

Consider the mapping
$$\sigma: A \longrightarrow {R/P \ aR/P \ aR/P \ az \ w}$$
 with $\sigma[\ {x \ ay \ az \ w}]$ = ${x+p \ ay+p \ w+p}$, where $\bar{a}=a+P$. Then since $a \notin P$, we have that $Ker \ \sigma = \{ \left(\begin{array}{cc} x \ ay \ az \ w \end{array} \right) | \ x, \ y, \ z, \ w \in P \} = PA$. Therefore $A/PA \cong \left(\begin{array}{cc} R/P \ \bar{a}R/P \ \bar{a}R/P \ R/P \end{array} \right)$.

Now since PZ(A)A=PA and A is Azumaya, we have $PA\cap Z(A)=PZ(A)$. So A/PA is Azumaya over Z(A)/PZ(A). Also in this case Z(A/PA)=Z(A)/PZ(A) [1]. But since $A/PA\cong \left(\begin{array}{cc} R/P & \bar{a}R/P \\ \bar{a}R/P & R/P \end{array}\right)$, we have $Z(A/PA)\cong R/P$. So $\left(\begin{array}{cc} R/P & \bar{a}R/P \\ \bar{a}R/P & R/P \end{array}\right)$ is Azumaya-over -R/P. Therefore, by our Lemma 3.1, \bar{a} is invertible in R/P. Hence R/P is a field. Thus R is a von Neumann regular ring.

COROLLARY 3.3. Let R be a commutative ring, then the following are equivalent:

- 1) R is von Neumann regular.
- 2) R is semiprime and for every finitely generated R-algebra A, J(A) is nilpotent and A/J(A) is Azumaya.

PROOF. In [2], E.P. Armendariz proved that if R is von Neumann regular then J(A) is nilpotent and A/J(A) is a regular ring.

Conversely, let P be a prime ideal and $a \notin P$. Then $A = \begin{pmatrix} R & aR \\ aR & R \end{pmatrix}$ is finitely generated semiprime R-regular.

But since A is a normalizing finite extension of R, we have

 $0=J(R)=R\cap J(A)$ and so $R\cong A/J(A)$. This shows that A/J(A) is R-algebra.

Now since A is semiprime and J(A) is nilpotent, J(A) = 0. Therefore A is Azumaya. By Theorem 3.2, R is von Neumann regular.

Let A be a ring with identity. Consider the condition (*) the ring A satisfies a polynomial identity $f(x_1, x_2, \dots, x_n) = 0$ for which f has coefficient in C, the center of A, and for which at each prime ideal P of A, f induces a nontrivial polynomial identity on A/P.

THEOREM 3.4 [5]. Let A be a ring with identity which is integral over unital subring B of C, the center of A, suppose futher that B satisfies (*), then; If P is prime ideal of A, P is maximal ideal of A if and only if $P \cap A$ is maximal ideal of B.

THEOREM 3.5. Let R be a commutative ring. Then the following are equivalent;

- 1) R is von Neumann regular.
- 2) Every integral extension of R is π -regular.

PROOF. Suppose that R is von Neumann regular and A is integral extension of R. To show that A is π -regular, let P be a prime ideal of A. Then A/P is integral over $R/P\cap R$. Since P is a maximal ideal of A, $P\cap R$ is maximal ideal of R. Therefore $R/P\cap R$ is a field. By Theorem 2.6, A/P is π -regular. Thus A is π -regular. Conversely, since $A = \left(\begin{array}{c} R & R \\ R & R \end{array} \right)$ is integral extension of R, it is π -regular. It

follows that R is von Neumann regular.

References

- [1] A. Brown, On Artin's theorem and Azumaya algebras, J. Algebra, 77(1982) 323-332.
- [2] E. P. Armendariz, On semiprime P. I. -algebra over commutative regular rings, Pacific. J. Math., 66(1976) 23-28.
- [3] F. DeMeyer and E.C. Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, New York and Berlin 1971.
- [4] J.W. Fisher and R.L. Snider, On the von Neumann regular prime factor rings, Pacific. J. Math., 54(1974) 135-144.
- [5] A.G. Heinecke, A remark about noncommutative integral extensions, Canad. Math. Bull., 13(1970) 359-361.
- [6] G. Michler and O. Villamayor, On rings whose simple modules are injective, J. Algebra, 25(1973) 185-201.
- [7] J.A. Wehlen, Algebras over absolutely flat commutative rings, Trans. Amer. Math. Soc., 196(1974) 149-160.

Department of Mathematics Education Gyeongsang National University Chinju 620 Korea

Department of Mathematics Dong-A University Pusan 600-02 Korea

Received March 2, 1987