ON THE JORDAN STRUCTURE
 IN OPERATOR ALGEBRAS

Gyung Soo Woo

1. Introduction

The study of JB-algebras was initiated by Alfsen, Shultz and St申rmer [3], even though earlier approaches have been made by von Neumann and Segal. In [3], the study of JBalgebras can be reduced to the study of Jordan algebras of self-adjoint operators on a Hilbert space and $M_{3}{ }^{8}$.

The purpose of this note is to show Jordan-Banach algebra versions of some facts about C^{*}-algebras by some modifications. In section 2, we give the formal definitions of JBalgebras and JB*-alcebras and some known results. In section 3, we study projections and ideals in JB-algebra. In section 4, we study the multipliers of JB-algebras.

2. Preliminaries

A Jordan Banach algebra is a real Jordan algebra A equipped with a complete norm satisfying

$$
\|a \circ b\| \leq\|a\|\|b\|, \quad a, b \in A .
$$

A $J B$-algebra is a Jordan Banach algebra A in which the norm satisfies the following two additional conditions for $a, b \in A$:
(i) $\left\|a^{2}\right\|=\|a\|^{2}$
(ii) $\left\|a^{2}\right\| \leq\left\|a^{2}+b^{2}\right\|$.

Examples of JB-algebras are JC-algebras, i.e., the norm closed. Jordan algebras of self-adjoint operators on a complex Hilbert space, and the exceptional $M_{3}{ }^{8}$ consisting of all Hermitian 3×3 matrices over the Cayley number.

Note that an associative JB-algebra can be realized as the self-adjoint part of a commutative C^{*}-algebra [15]. In finite dimension, JB-algebras are precisely the formally real Jordan algebras. However this is not true in infinite dimensional JB-algebras [13].

A JB-algebra which is also a Banach dual space is said to be a $J B W$-algebra. Then the second duai, $A^{* * *}$ of a JBalgebra A is a unital JB-algebra and moreover, it is a JBWalgebra in the Arens product which contains A [14]. A special case of this is already known; if A is a JC-algebra then $A^{* *}$ is isomorphic to a JC-algebra [12].
The reader is referred to $[3,4,12,13]$ for properties of JBalgebras. The complex analogue of JB-algebras are the JB*algebras (Kaplansky's Jordan C*-algebras), introduced by Kaplansky, who first presented it at a lecture for the Edinburgh Mathematical Society in July 1976.
A $J B$-algebra is a complex Jordan Banach algebra \mathscr{A} with an involution * such that for all $x \in \mathscr{A}$,

$$
\left\|\left\{x, x^{*}, x\right\}\right\|=\|x\|^{3} \text { holds. }
$$

For example, every C*-algebra A is a JB-algebra in the Jordan product. The second dual, $\mathscr{A}^{* *}$ of a JB*-algebra \mathscr{A} with the Arens product, is a unital JB*-algebra [20].

It is known that the set of self-adjont elements of a unital JB*-algebra forms a unital JB-al-ebra, while, conversely, the complexification of a unital JB-al-ebra in a suitable norm is a JB*-algebra [17]. In [20], this also holds for nonunital JB-algebras. Therefore JB-algebras and JB*-algebras are in a one-to-one correspondence.
A Jordan W^{*}-algebra is a unital JB*-algebra which is the dual of a complex Banach space. In [11], it is shown that the self-adjoint part of a Jordan W^{*}-algebra is a JBWalgebra and the complexification of a JBW-algebra is a Jordan W*-algebra. The general theory of JB*-algebras can be found in [11, 17, 19, 20].

3. Projections and Txeals in JB-algebras

If $p^{2}=p$ then p is called an idempotent. An idempotent in a JB-algebra will be called a projection.

Let A be a JB-algebra and let a, b, c be elements of A. The Jordan triple product $\{a, b, c\}$ is defined by

$$
\{a, b, c\}=(a \circ b) \circ c+a \circ(b \circ c)-(a \circ c) \circ b
$$

and for $a \in A, U_{a}$ and L_{a} are defined by

$$
U_{a} b=\{a, b, a\}, \quad L_{a} b=a \circ b \text { for } b \in A .
$$

Note that if A is a JC-algebra then $\{a, b, c\}=\frac{1}{2}(a b c+c b a)$.
Recall that two projections p and q are said to be orthogonal if $p \circ q=0$.

Lemma 3.1. Let p and q be projections in the JB-algebra A. Then the followings are equivalent.
(i) $p q=0$
(ii) $p \circ q=0$
(iii) $\{p, q, p\}=0$
(iv) $p+q$ is a projection.

Proof. By [13, Lemma 4.2.2] and easy calculation.
Let A and B be JC-algebras. We call a linear map ϕ from A into B is a Jordan homomorphism if $\phi(a \circ b)=\phi(a)$ $\circ \phi(b)$ for all $a, b \in A$ and ϕ takes the identity into the identity.

Proposition 3.2. Let p and q be orthogonal projections of JC-algebra A and ϕ is a Jordan homomorphism. Then $\phi(\{p, x, q\})=\{\phi(p), \phi(x), \phi(q)\}$ holds for all $x \in A$.

Proof. Since $2(p \circ x) \circ q=\{p, x, q\}$ and $\phi(p) \phi(q)=0$ by Lemma 3.1 we have

$$
\begin{aligned}
\phi(\{p, x, q\}) & =\phi(2(p \circ x) \circ q)=2(\phi(p) \circ \phi(x)) \circ \phi(q) \\
& =\{\phi(p), \phi(x), \phi(q)\} .
\end{aligned}
$$

The following is a slight modification of [7, Proposition 1.5.8].

Proposition 3.3. Let A and B be JC -algebras and ϕ is a Jordan homomorphism from A into B. If p is a projection of A, then $\phi(p)$ is a projection of B.

Proof. We get $\{\phi(p)\}^{2}=\phi(p) \circ \phi(p)=\phi(p \circ p)=\phi\left(p^{2}\right)$ $=\phi(p)$ since p is a projection. Hence $\phi(p)$ is a projection of B.

Recall that elements a, b in a JB-algebra A are said to operator commute if $L_{a} L_{b}=L_{b} L_{a}$. i.e., if ($a \circ c$) $\circ b=a \circ(c \circ b)$ for all c in A. If p is a projection in A than a and p operator commute if and only if $L_{p} a=U_{p} a$ or $a=U_{p} a+U_{e-p} a$.

A projection p in A is said to be central if p operator commutes with every element of A.

Remark. Central projections can be used to construct more general ideals. For example, if A is a JB-algebra, B a JBsubalgebra of A and p a central projection in A, then the set of all b in B such that $p \circ \dot{b}=0$ is an ideal in B (in fact it is a Jordan ideal). For, let $J=\{b \in B \mid p \circ b=0\}$. If $a \in J$, $c \in B$, then $p \circ(a \circ c)=(p \circ a) \circ c=c \circ(p \circ a)=0$. Hence $a \circ c \in J$.

A subspace J of a JB-algebra A is said to be a Jordan ideal in A if $L_{o} b \in J$ whenever $a \in J, b \in A$. A linear subspae J of A is a Jordan ideal if and only if $a b a \in J$ whenever $a \in A$ and $b \in J$ [12]. Note that Jordan ideals correspond to two-sided ideals in the following sense; A norm closed self-adjoint complex subspace \mathcal{T} of a C^{*}-algebra \mathscr{A} is a two-sided ideal if and only if its self-adjoint part $\mathcal{T}_{s a}$ is a Jordan ideal of $\mathscr{A} s$. This can be seen easily by considering the weak*-closure in $\mathscr{A}^{* *}$ of $\mathcal{7}$ and using [8, Theorem 2.3], or by [12, Theorem 2].
A subspace J is said to be a quadratic ideal in A if $U_{a} b$ $\in J$ whenever $a \in J, b \in A$. Note that every Jordan ideal is a quadratic ideal.

Lemma 3.4. Let J be a Jordan ideal in a JB-algebra A. Then A / J with its natural Jordan product and quotient norm is a JB-algebra.

Let \mathscr{A} be a JB^{*}-algebra with self-adjoint part A. A Jordan ideal \mathcal{J} of \mathscr{A} is said to be a $*$-ideal if, whenever $z \in \mathcal{T}$ then $z^{*} \in \mathcal{T}$. Let J be the self-adjoint part of a norm closed ideal \mathcal{J} of \mathscr{A}, then $\mathcal{I}=J+i J$ and J is a norm closed ideal of A.

Theorem 3.5 [17]. Let \mathscr{A} be a JB*-algebra. Let \mathcal{J} be a
closed *-ideal. Then $\mathscr{A} / \mathcal{T}$, when equipped with the quotient norm, is a JB*-algebra. Furthermore, if J is the self-adjoint part of $\mathcal{7}$, then the self-adjoint part of $\mathscr{A} / \mathcal{7}$ is isometrically isomorphic to A / J.

Remark. The self-adjoint part of Jordan *-ideals is precisely the Jordan ideal in the unital JB-algebra A which is the self-adjoint part of \mathscr{A}.

Lemma 3.6. If A is a JB-algebra, then every weak *-ideal J of $A^{* *}$ is of the form $U_{p}\left(A^{* *}\right)$ for a central projection $p \in A^{* *}$.

Proof. By [3, Lemma 9.1] J will contain an increasing approximate identity $\left\{U_{\alpha}\right\}$, i. e., $0 \leq U_{\sigma} \leq 1, \quad \alpha \leq \beta$ implies $U_{a} \leq U_{s}$ and $\left\|U_{c} \circ a-a\right\| \rightarrow 0$ for all $a \in J$. Since $A^{* *}=\tilde{A}, A^{* *}$ is monotone complete; Let p be the least upper bound of $\left\{U_{a}\right\}$ in $A^{* *}$. Then by [3, Theorem 3.10], $U_{a} \rightarrow p$ strongly. It follows that $p \in J$ and $p^{2}=p$ is an identity for J and this is also the greatest projection in J. Since J is an ideal,

$$
U_{p}\left(A^{* *}\right) \subseteq J=U_{p}(J) \subseteq U_{p}\left(A^{* *}\right)
$$

which shows $J=U_{p}\left(A^{* *}\right)$. Furthermore, if $s^{2}=1$ and $s \in A^{* *}$, then $U_{s} p$ is a projection in J and so $U_{s} p \leq p$. Since $U_{s}{ }^{2}=I$, by positivity of the map U_{s}, we have

$$
p=U_{s}^{2} p \leq U_{s} p \leq p \quad \text { so } \quad U_{s} p=p
$$

Since this holds for every symmetry, by [3, Lemma 5.3] p is central.

Theorem 3.7. If p is a central projection in a JB-algebra A, then $U_{p} A$ is a Jordan ideal in A. Conversely, if p. is
a projection in A such that $U_{\rho} A$ is a Jordan ideal then p is central.

Proof. If p is a central projection in A and then, for $a \in A, L_{p} a=U_{p} a$. Therefore, for $b \in U_{p} A$,

$$
b \circ a=L_{b} a=L_{b} L_{t} a=L_{p} L_{b} a=U_{p}(b \circ a) \text { and } b \circ a \in U_{p} A .
$$

It follows that $U_{p} A$ is a Jordan ideal. Conversely, if $a \in A$ we must have $p^{\circ} a \in U_{p} A$, thus $U_{p}(p \circ a)=p \circ a$. This implies $U_{p} a=L_{p} a$. Hence p is central.

4. Multipliers of JB-algebras

The concept of the multiplier algebra of a C^{*}-algebra has been exiended to JB-algebra by Edwards [10]. An element b in a second dual $A^{* *}$ of a $J B$-algebra A is said to a multiplier if, for each $a \in A, L_{a} b \in A$.

The set $M(A)$ of multipliers of the JB-algebra A is a unital JB-algebra and is the largest JB-subalgebra of $A^{* *}$ of A in which A is a Jordan ideal [10].

Lemma 4. 1. The JB-algebra A possesses an approximate identity.

Proposition 4.2. If B is a JB-subalgebra of JB-algebra A containing an approximate identity for A, and operator commute, then $M(B) \subset M(A)$.

PRoof. Let $\left\{u_{j}\right\}$ be approximate identities for A contained in B. For $a \in A$ and $b \in M(B), a \circ b=\left(\lim a \circ u_{j}\right) \circ b=a \circ$ (lim $\left.u_{j} \circ b\right) \in A$ since $u_{j} \circ b \in B$ and operator commute. Hence $b \in M(A)$. Thus $M(B) \subset M(A)$.

For a JB-algebra A, A^{+}, the set of squares of elements
of A, is a positive cone which generates A. A JB-subalgebra B of A is said to be an hereditary $J B$-subalgebra if whenever $0 \leq a \leq b$ with $a \in A$ and $b \in B$ then $a \in B$.

Lemma 4.3 [5]. Let A be a JB-algebra and J be an hereditary JB-subalgebra of A. Then
(i) The abelian elements of A form an hereditary and norm closed set.
(ii) Each abelian element of J is an abelian element of A.

Lemma 4.4. Every non-zero closed quadratic ideal in the multiplier algebra $M(A)$ of the JB-algebra A has non-zero intersection with A.

Proof. Let J be a non-zero closed quadratic ideal in $M(A)$ and let b be a non-zero element of the positive cone J^{+}in J. It follows from [8] that $b^{1 / 2}$ is also an element of J^{+}.

For each element $a \in A$,

$$
U_{b^{1}{ }_{2}} a=2\left(L_{b^{1 / 2}}\right)^{2} a-L_{b} a
$$

is an element of A since both b and $b^{1 / 2}$ are elements of M (A). Let $\left\{u_{j}\right\}$ be approximate identities for A. Then $\left\{U_{b^{1}}{ }^{2} u_{j}\right\}$ is a bounded increasing net in A which possesses a least upper bound in $A^{* *}$. It follows from [14, Lemma 2.2] that this least upper bound is b. Therefore, for some j,

$$
U_{b^{1 / 2}} u_{j} \neq 0 \text { and } 0 \leq U_{b^{1 / 2}} u_{j} \leq b .
$$

Hence the positive cone J^{+}in J is a closed face of the cone $M(A)^{+}$and it follows that $U_{b^{1 / 2}} u_{j}$ is an element of $J \cap A$.

The following theorem is a Jordan Banach algebra version of C^{*}-algebra case [2, Proposition 2.3].

Theorem 4.5. Each non-zero hereditary JB-subalgebra of $M(A)$ has a non-zero intersection with A.

Proof. By Lemma 4.4 and by the fact that norm-closed quadratic ideals of JB-algebra A are precisely the hereditary JB-subalgebras of A.

A Jordan ideal J in a JB-algebra A is said to be essential in A if every non-zero closed Jordan ideals in B has nonzero intersection with J.

Theorem 4.6 [10]. (i) The JB-algebra A is essential Jordan ideal in its multiplier algebra $M(A)$. (ii) If the JBalgebra A is an essential fordan ideal in a JB-algebra B then there exists a Jordan isomorphism from B into $M(A)$ which is the identity mapping on A.

References

[1] C.A. Akemann, G. A. Elliott, G. K. Pedersen and J. Tomiyama, Derivations and multipliers of C^{*}-algebras, Amer. J. Math. 98(1976), 679-708
[2] C. A. Akemann, G. K. Pedersen and J. Tomiyama, Mulipliers of C^{*}-algebras, J. Funct. Anal. 13(1973), 277-301.
[3] E.M. Alfsen, F.W. Shultz and E. St ϕ rmer, A Gelfand-Neumark theorem for Jordan algebras, Adv. Math. 28(1978), 11-56.
[4] H. Braun and M. Koecher, Jordan-Algebren, Springer-verlag, Berlin, Heidelberg and New York, 1966.
[5] L. J. Bunce, Type I JB-algebras, Quart. J. Math. Oxford(2), 34 (1983), 7-19.
[6] J. Dixmier, C^{*}-algebras, North-Holland, Amsterdam, New York and Oxford, 1977.
[7] J. Dixmier, Von-Neumann algebras, North-Holland, Amsterdam, New York and Oxford, 1981.
[8] C.M. Edwards, Ideal theory in JB-algebras, J. London, J, Math. Soc(2), 16(1977), 507-513.
[9] C.M. Edwards, On the facial structure of a JB-algebra, J. London Math. Soc. (2) 19(1979), 335-344.
[10] C. M. Edwards, Multipliers of JB-algebras, Math. Ann. 249 (1980), 265-272.
[11] C. M. Edwards, On Jordan W*-algebras, Bull. Soc. Math. 104 (1980), 393-403.
[12] E. G. Effros and E. St ϕ rmer, Jordan algebras of self-adjoint operator, Trans. Amer. Math. Soc. 127 (1967), 313-316.
[13] H. Hanche-Olsen and E. Stprmer, Jordan Operator Algebras, Pitman, Boston, London and Melbourne, 1984.
[14] F.W. Shultz, On normed Jordan afgebray which are Banach duai spaces, J. Funct. Anal. 31 (1979), 360-376.
[15] R.R. Smith, On non-unital Jordan-Banach algebras, Math. Proc. Camb. Phil. Soc. 82 (1977), 375-380.
[16] D. M. Topping, An isomorphism invariants for spin factors, J. Math. Mech. 15 (1966), 1055-1064.
[17] J. D. M. Wright, Jordan C ${ }^{*}$-algebras, Mich. Math. J. 24 (1977), 291-302.
[18] J. D. M. Wright and M. A. Youngson, On isometries of Jordan algebras, J. London. Math. Soc. (2), 17 (1978), 339-344.
[19] M. A. Youngson, A Vidav theorem for Banach Jordan algebras, Math. Proc. Camb. Phil. Soc. 84 (1978), 263-272.
[20] M. A. Youngson, Non-unital Banach Jordan algebras and C*triple systems, Proc. Edinb. Math. Soc. I, 24 (1981), 19-29.

Department of Mathematics
Ch'angwon National University
Ch'angwon 615
Korea

Received April 10, 1987

Supported by the research grant of the Ministry of Education, 1986~1987.

