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Power Algorithms for Analysis of Variance Tests

Hur, Seong Pil
Abstract

Power algorithms for analysis of variance tests are presented. In experimental design of opera-
tional tests and evaluations the selection of design parameters so as to attain an experiment with
desired power is a difficult and important problem.

An interactive computer program is presented which uses the power algorithms for ANOVA
tests and creates graphical presentations which can be used to assist decision makers in statistical
design. ANOVA tests and associated parameters (such as sample size, types and levels of treatments,
and alpha-level) are examined. .

1. Introduction

1-1 Description of the Problem

A statistical design. is a plan according to which an experiment is patterned. It provides the basis
upon which appropriate statistical tests and inferences can be made after the experiment has been
performed. The selection of the experimental design to be used in a given situation is extremely
important because it plays a predominant role in the effieiency of the experiment, the precision with
which the objectives are met, and the total effort (and cost) expended upon the experiment.

The concern of this thesis is the development of power algorithms for analysis of variance tests.
The experimenter wants a test to achieve the correct decision with as high probability as possible in
practical operational tests and evaluations given certain conditions hold.

1-2 Scope of the Thesis

An interactive computer program is developed which uses power algorithms for ANOVA tests.
The program can be used by decision makers who may not have deep knowledge of statistics or may
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be unfamiliar with the details of the design of experiments. The output helps the decision maker
design experiments appropriate for testing hypotheses with common statistical tests. The experiment
designer can use the program to evaluate the effect upon power of varying underlying design para-
meters such as sample size.

Because the underlying statistical noncentral distributions used in computing power do not have
tables, approximation methods are used for computing the noncentral CDFs. Approximation

methods were developed which are efficient, requiring reduced computer CPU time.

1-3 Background

A hypothesis is a statement about the values of the parameters of a probability distribution. For
example, suppose we think that the mean yield of a chemical process is more than 94.5 percent.
Hypotheses to test this statement might be expressed formally as,

"Ho: u<94.5
Ha: u>94.5

The statement Ho: u < 94.5 is called the null hypothesis, and Ha: g > 94.5 is called the alternative
hypothesis. The value of the mean specified in the null hypothesis might be determined in one of
two ways. It may result of some theory or model regarding the process under study, or it may be
the result of contractual specifications.

To test a hypothesis we usually devise a procedure for taking a random sample, computing an
appropriate test statistic, and then rejecting of failing to reject the null hypothesis Ho, depending on
the outcome on the test statistic. Part of this procedure is specifying the set of values for the test
statistic which lead to rejection of Ho. This set of values is called the critical region or rejection
region for the test. ' '

Two kinds of errors may be committed when testing hypotheses. If the null hypothesis is
rejected when it is true, then a type I error has occurred. If the null hypothesis is not rejected when
it is false, then a type II error has been made. The probabilities of these two errors are given special

symbols:

a = P(type I error) = P(reject Ho | Ho is true)
B =P(type Il error) = P(fail to reject Ho | Ho is false)

Generally, B is calculated using a noncentral distribution depending on a noncentrality parameter.
The noncentrality parameter is usually a measure of the distance (in some sense) between the values
of the parameter under the null and alternate hypotheses. Thus, type II error rates depend upon
parameters of the distribution of the test statistic under the alternative hypothesis. Power is the
probability the test would reject Ho when Ho is false, or 1—8.

In addition, whatever the test procedure is, rejecting Ho when Ho is not true is usually something

we want a test to achieve with as high a probability as possible. Therefore we want the power of the
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test, for a given value of non-centrality value, to be high. Power algorithms are used to assist in the
“best” selection of parameters for a statistical design. We use approximation methods to compute

the CDF’s of the noncentral F, noncentral 22, and noncentral t distributions.

2. Noncentral Chi-square, F Distributions

2-1 Noncentral Chi-square Distribution

If W1, w2, ..., Wn are independently distributed as N(g;, 1), 1,2, ..., n, then % Wi? has a distri-
bution known as a noncentral 2%(n, \) where n is the number of degrees of freedom and A = Z,ui2 is
the noncentrality parameter. When gy =, =... = B, = 0, then X = 0, and the noncentral Z%(n, 0)
reduces to the usual central X?(n) with n degrees of freedom. The cumulative distribution function

of Z%(n, \) is,

F(X:n,2)=Pr(2*(n, 1)< X]
(2.1

s IS g 2y le% dyxy 0
A LA /¢ %))
while F(x;n,A)=0forx<0
It is possible to express F(x;n,A) for x>0, in an easily remembered form as a weighied sum of
central x? CDF’s with weights equal to the probabilities of a Poisson distribution with expected
value A/2. Thatis, .

F(X;n, )= ¥ |—F ] « Pr( 2%,,,;, <X) (2.2

=0 | J/

« [(w)feﬂ

Thus a Z(n, \) variable can be regarded as a mixture of central Z? variables. This interpretation is
often useful in deriving the distribution of functions of noncentral Z* random variables.
The probability density function can, similarly, be expressed as a mixture of central Z2 pro-

bability density functions

o 29 i1 e—i—%X%
fx) = C - — ,where C= —— - (2.3)
0 G +D2/ P(G+7) 27

The mean and variance of the distribution are

E(x) = n + 2\ and Var(x) = 2n + 8\ [Ref. 1:p. 130].
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2.2 Noncentral F Distribution

If Y, and Y, are independent and Y is %, ? (n1, A) and Y, is *2(n,) then
V=(Y1/n)/(Y2/n2) 2.4)

is distributed as F'(n,, n,, A), the noncentral F distribution with n; and n, degrees of freedom and
noncentrality parameter A. -Its density function is given by
L BTGP0 v
fm=¢C3 —~ V20 _
=0 [T k) (gt mv)? @5
Ra m

where ' 1.2 ¥
e'zn,"nzzv2

G RGUES

when A = 0 this reduces reduces to the density function of the central F(n,, n,) distribution. The

mean and variance of the distribution are

= _M A
E(v)_n2-2(1+n1) forn>2

and

Var (v) =

2n (n;, +22)2 n;+42
for ;> 4,

ni(ne-2) | (np-2) (np-4) T np-4

When X = 0, these reduce to the mean and variance of the central F(n,, n,) distribution. Derivation
of (2.5) is shown in [Ref. 1:p. 189}.
The cumulative distribution of V can be expressed in terms of an infinite series of multiples of

incomplete beta functions, as follows:
= A, .
PriV<fel= 3% -E—%,l—] et -I_ﬁn_ﬁ)_(é-nl-}-],%’)
LA ny-+ny fo (2.6)

where | n (—é my+ j,%z) is the incomplete beta function.
ny+ny fo
In this thesis, we use Paulson’s Approximation from Severo and Zelen [Ref. 2]. Their approxi-

mation is as follows:

Pr(V<fp)~0(x)

where P 1 9
- & - e @
X= 9 f 2 1 ’ and .
2 - 1o 5 52
C5(at22,))(m+4) 2"'_9n21(n11+11)3 I

P is the standard normal CDF.
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The following table shows some values obtained using this approximation, together with exact
values of Pr (V < fo). It can be seen in Table 1 that this approximation gives about 2 decimal
place accuracy. Thus, this approximation provides adequate acguracy for computing the power of
F-tests [Ref. 3:p. 202). '

Table 1. CDF of a Noncentral F Distribution

n; n, A fo approx exact
3 10 4 3.708 0.7499 : 0.745
4 6.552 0.9192 0918

16 : 3.708 0.2023 0.206

16 6.552 0.190 0.517

3 20 4 3.098 0.7067 0.700
’ 4 4938 0.8894 0.887

16 3.098 0.1186 0.126

16 4.938 0.3488 0.347

5 10 6 3.326 0.7337 0.731
6 5.636 0.9143 0.914

24 3.326 0.1553 0.158

24 5.636 0.4629 0.461

S 20 6 2.711 0.6685 0.664
: 6 4,103 0.8715 0.870

24 2.711 0.0643 0.069

24 4.1030 0.2437 0.245

8 10 9 3.072 0.7159 0.714
9 5.057 _ 0.9087 0.908

36 3.072 0.1166 0.119

36 5.057 0.4088 0.408

8 30 9 2.266 0.581 0.578
9 3.173 0.8157 0.813

36 2.266 0.0146 0.017

36 3.173 0.0846 0.088

3. Description of the Power Program

3-1 Procedure Overview

The interactive program included in this thesis is written in FORTRAN 77. It was written for
use on an IBM370 from IBM3278 terminal. It is an interactive program. The command ‘THVS’ is
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all that is required to start this program. The executive file name initializes the virtual machine
environment and asks the user questions about the choice of program and compilation requirements.
It then activates the selected program. The ‘ANOVA’ is interactive programs which will be discussed

in detail in later chapters. The output from the programs are presented on the terminal screen.

3.2 Instructions for Program Access

To start the program, make sure you have loaded (THVS, ANOVA) on your disk. In CMS
(operating system mode), type ‘THVS’ and you will see:

Please brovide the FILENAME for your VS FORTRAN program.
Now type the program name you want, for example ‘ANOVA’, the response is:

Do you need to compile your program? (y/n)
If you want to run, type ‘Y’ and your program will be loaded.

A detailed description of the ANOVA (Analysis of Variance Test) is given in Chapter IV,

Following the screen output from the selected test, the user will be asked some questions about
the output. We will see the following:

Do you wish to BROWSE your output? (Y)

n

Print your output file? (Y)

n

Do you wish to XEDIT the program file? (Y/N)

n

Do you wish to run the program again? (Y)

n

Then return to CMS mode.

4. Power of the F-Test

4.1 Introduction

Under appropriate conditions, the best test for testing equality of several means is the analysis
of variance. The analysis of variarice has a wide application. It is one of the most useful techniques
in the field of statistical inference. As in any hypothesis-testing situation, the power of the F test is
of interest to the experimentor.

In this chapter we will discuss the power of F tests and provide an example. To give an overall
evaluation of the power of F tests in the analysis of variance, we may use power curves. An im-

portant use of the power curve is to guide the experimentor in selecting the sample size (number of
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replicates) so that the design will be sufficiently sensitive to important potential differences in the

treatments. We will consider power curves for one-way and multi-way analyses of variance(ANOVA’s).

4.2 The One-way Classification Analysis of Variance

Suppose we have k different levels of a single factor that we wish to compare. The different
levels of the factor are often called treatments. The observed responses from each of k treaments is

random a sample on a random variable. The data would appear as in Figure 4-1.

Observation
1 Yii Yo Yin
2 Y Y Yon
Treatment
k Yir  Yr2 Yin

Figure 4-1. Typical Data for One-way Classification Analysis of Variance

We will find it useful to describe the observations by the linear statistical model:

(4.1)

Y =#+Ti+e

ij ij
where Yij is the (ij)th observation, u is a parameter common to all treatments called the overall mean,
ti is a parameter peculiar to the ith treatment called the ith treatment effect, and € jj isarandom
error component, assumed to be IID N(0, ¢2).

The indices used are:

® i=the number of treatments,i=1,2,..,k

® j=the sample size per treatment,j=1,2,...,n

The objective in the ANOVA is to test appropriate hypotheses about the treatment effects. The
variance o0? is assumed constant for all levels of the factor. This model is called the one-way classifi-
cation analysis of variance because only one factor is investigated.

We are interested in testing the equality of the k treatment effects, so the appropriate hypothes

are . = = = =
HO L T TT2 . Tk T

H, * r1# 'rjforsomei,j
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That is, if the null hypothesis is true, then each observation is made up of the mean u + 7 plus a
realization of the random error € jj

The results of the ANOVA procedure is summarized in Table 3.

We may use the expected values of the mean squares to verify that Fo (in Table 3) is an appro-
priate test statistic for Ho. From the expected mean square we see that, in general, MSE is unbiased
estimator of 02. Also, under the null hypothesis, MSt is an unbiased estimator of o?%- However, if the
null hypothesis is false, then the expected valued of MSt is greater than ¢2. The expected value of
the mean square error is %, and the expected value of the mean square between treatments is e+
(n 2 (t)?)/(k-D)

Therefore, under the alternate hypothesis the expected value of the numerator of the test
statistic (F) is greater than the expected value of the denominator and we would reject Ho with
values of the test statistic which are too large. That is, we would reject Ho if

Fo> Fa, (1), (N-K)

where degrees of freedom 1 is K-1, degrees of freedom 2 is k(n-1) = N-k, and a is the type I error rate.

Table 3. The Analysis of Variance for a One-way Classification

Source of Variation Sum of Squares Degrees of Freedom Mean Square F,
Between Treatments SSt k-1 MSt MSt/MSE
Error (within te
treatments) SSE k(n-1) MSE
Total SST kn-1
The power of the test is:
1- B=P ( Fo ) Fa,(K-1),(N-k) | Ho is false ) (4.2)

To evaluate the § in Equation 4.2 we need to know the distribution of the test statistic F j if the null
hypothesis is false. It can be shown that, if Ho is false, the statistic F ° has the noncentral F distribu-
tion with k-1 and k(n-1) degrees of freedom and noncentrality parameter A, given by
ny (ri)?
g2

A=

The noncentrality can be interpreted as the squared standardized distance between the origin and
(74,75, 72 )- Theratio 3 (ri)2,/0? is called the squared standardized distance. If only
an estimate of ¢ is available, one may replace 0? with the estimate [Ref. 8:p. 34].
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4.3 The Multi-way Classification Analysis of Variance

Many experiments require a study of the effects of two or more factors. It can be shown that,
under certain conditions, factorial arrangements are the most efficient designs for this type of
analysis.

One of the simplest factorial experiments involves only two factors or sets of treatments say
factor A and factor B. Suppose there are a levels of factors A and b levels of factor B, and these are
arranged in a 2-way factorial design; that is, each replication of the experiment contains all ab treat-
ment combinations. Assume there are n replications of the experiment, and let Yijk represent the
observation taken under the ith level of factor A and the jth level of factor B in the kth replication.

The data can be summarized és shown in Figure 4.2. The order in which the abn observations
are taken is selected at random.

Factor B
Y110 Y112 | Yiorr Y12 Yib1 Yib2
e Yqon v Yyon s Yppo
Yo110 Y212 | Yo21 Yo Yob1s Y2b2
yoeey Y21H geeey Y22n sosey Y2bn
Factor
A

Yo Ya12 Yao1 Ya22 Yabi Yab2

a yerey Yazn yoemy Yazn ... youey Yabn

Figure 4.2 Typical Data notation for a Two-way Classification.

The observations may be described by the linear model:

Yig S p+oit B+ + €45k, (4.3)
where

® = the overall mean effect;

® T = the true effect of ith jevel of factor A, i=1,2, ..., a;
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Bj = the true effect ofjth level of factor B,j=1, 2, ..., b;
® ¢ ijk =2 random error component, assumed to be IID N(O, a%).

= the effect of the interaction between t and B;; and

Both factors are assumed to be fixed. It is usually assumed that the treatment effects are defined as
deviations from the overall mean, so Zt; = 0 and ZBj = 0. Similarly, the interaction effects are fixed
and usally defined so that E(tﬂ)ij = 0, where the summation is over either i or j. Since there are n
replicates of the experiment, there are a total of abn observations.

We are interested in testing various hypothesis about the parameters in equation 4.3. An appro-
priate hypothesis testing procedure would be the analysis of variance. More spicifically, as we are
considering two controllable sources of variation (A and -B), the procedure is called the two-way
classification analysis variance.

In order to test the hypothesis Ho; t; = 0 for i=1, 2, ..., a (no row factor effects), Ho;ﬁj =0 for
j=1,2, .., b (no column factoreffects), and _Ho; (tB)ij = 0 (no interaction effects), we can expresses

the total sum of square as:
SST = SSA + SSB + SSAB + SSE. 4.9

Here, SSA is a sum of squares due to “rows” or factor A, SSB is a sum of squares due to “columns”
or factor B, SSAB is a sum of squares due to the interaction between A and B, and SSE is a sum of
squares due to error. The number of degrees of freedom associated with each sum of squares are
shown in Figure 4.3. _

If we assume Ejji are IID N(0, ¢*) and apply Cochran’s theorem (Theorem 3-1) under the
null hypothesis of no effects, each sum of squares on the right-hand side of Table IV when divided
divided by o® is distributed as X* with the indicated number of degrees of freedom, and these
statistics are independent.

Theorem 3-1 (Cochran). Let Zi be IID N(O, 1) for i=1,2, ..., v and suppose Z‘Zi2 =Q, +Q; +
Q; +-+ + Qg where s<v, and the quadratic form Q; has v; degrees of freedom (i=1,2, ..., s). Then the
Q:, Q, ..., Qare independent chi-square random variable with vy, v,, ..., vs degrees of freedom,

respectively, if only if

v=wp byt oty

Effect Degrees of freedom
A 4 a-1
B b-1
AB interaction (a-1) (b-1)
Error ab(n-1)
Total abn-1

Figure 4.3 Table of degrees of freedom with sums of squares
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Assuming that factors A and B are fixed, the expected values of the mean squares are:

E(MSA) = 0%+ (bn L 7?)/(a-1) ; (4.5)
E(MSB) = 0%+ (bn X i?),/ (b-1) ; (4.6)
E(MSAB) = 62+ (nX E (78)ij?)/(a-1) (b-1); and CN))
E(MSE) = 0? 4.8)

Therefore, to test the hypothesis Ho: t,=0;i=1,2, ..., 1 (no rows factor effects), and Ho; Bj = (Q;
j=1, 2, ..., b (nocolumn factor effects), and Ho: (tB)ij = 0 (no interaction effects), we would divide
the corresponding mean square by mean square error. Under the null hypothesis of no effect, this
ratio will follow an F distribution with appropriate numerator degrees of freedom and ab(n-1)
denominator degrees of freedom, and the critical region will be located in the upper tail. The test

procedure is usually summarized in an analysis of variance table, such as shown in Table IV.

Table 4. The Analysis of Variance for a Two-way Classification

Source of Variation =~ Sum of Squares  Degrees of Freedom  Mean Square F,
A treatments SSA a-1 | MSA MSA/MSE
B treatments SSB | bl ~ MSB MSB/MSE
Interaction SSAB (a-1) (b-1) MSAB’ MSAB/Iv.-'SE
Error SSE ab (n-1) MSE
Total SST abn- 1

To the compute the power of tests in two-way ANOVAs. the procedure is the same as in the
one-way case. Relationships among A, the numerator degrees of freedom and the denominator
degrees of freedom are shown in Table V.

In a similar way one can expand to the general multi-way ANOVA procedure [Ref. 8:p. 124].

4.4 The Algorithms and Flowchart

A program for computing a power table andvpower curve in general ANOVA’s (fixed model) is
shown in the Appendix F. The power of one-way ANOVA’s are solved with these programs, using

the following the sequence:
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Step 1: Determine what variable to includesuch as sample size vs power, number of treatments
vs power, a-level vs power, or noncentrality vs power.

Step 2: Determing the values of the maximum, minimum, and increment of the variable chosen.

Step 3: Given input data, compute the critical value, using the inverse of the central F-distribu-
tion

Step 4: Compute the power value in each case; that is, the CDF of noncentral F-distribution
(Chapter 2).

Step 5: Print th power table or the power curve.

Tabie 5. Noncentrality Parameters for Power in 2 Two-way Anova

Factor A Numerator (DOF) Denominator (DOF)
bn X 7;%
—_— a1 ab (n-1)
gz _
2

p  2nZAs b1 ab (n-1)

02

IPH 2
AB 1—5239—”— (a-1) (b-1) ab (n-1)

Multi-way ANOVAs have the same algorithms but multi.way ANOVA may include tests of
interaction effects. The program considers only up to three-way interaction effects. We can explain
how to compute degrees of freedom of error term in m-way ANVOVA’s, assuming the balanced case,
as follows: Total degrees of freedom is DOF (Total) = n Z k(i) -1, where k(i) is the number of levels
of the ith factor [Ref. 1]. v

(1) If the modetl has only main effects without any interaction effects,

DOF 1 (Error) = DOF (Total) — Z (k(i)-1).
(2) If the model has several factors and only 2-way interaction effects,
DOF 2 (Error) = DOF 1 (Error) — ZZ (k(i)-1) (k(G)-1).

(3) If the model has several factors and only 3-way interaction effects,

DOF 3 (Error) = DOF 1 (Error) — 223 (k(i)-1) (kG)-1) (k(k)-1).

(4) If the model has several factors and 2-way and 3-way interaction effects,

DOF 4 (Error) = DOF 3 (Error) — T (k(i)-1) (k(j)-1).

If the model has more than 3-way interaction effects, then the user must modify the degrees of
freedom of the error terms accordingly. A flowchart is shown in Figure 4.4
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-

Determine One-way or/
Multi-way
Multi-way Anov? -/
One-way How Many Ways (M)?
For I-Factor Level,
Determine What to Include? How Many Level (M(i))

® Sample Size vs Power

® Alpha-Level vs Power ’ / Determine How May
® Noncentrality vs Power, Way Interaction?

Compute Corresdonding To

Degrees of Freedom

Compute the Critical 1
Determine What to Include?

® # of Replicates vs Power

Value and Power

® Noncentrality vs Power
® Alpha-Level vs Power

/ Piot Power Curve /4—_.—.—

Compute the Critical
Value and Power

1

Y J Analyze Again7

Figure 4.4, System Flowchart for F-Test Power

4.4 Examples of F-test
1. Example of Onw-way ANOVA test (number of replicates vs power)

a. Scenario

A manufacturer suspects that the batches of raw materiul urnished by his supplier differ signifi-
cantly in calcium content. There are a large number of batches currently in the warehouse. Five of
those are randomly selected for study. A chemist wants to know the appropriate sample size per each

batch, in order to test
-57-



Ho: 71, =1y =--=1;

against Ha: i ## tj for some i,j

The chemist would like to know how many replicates to run if it is important to reject Ho with
probability at least 0.9 when the standardized distance square ( 3 ri?,/¢?) is2and «=.05. Thus
he would like to know what the power of the F-test is for a range of possible replicates. He decides

to check replicates from 2 to 12 in increments of 1.
b. Inputs

Step 1: Select one-way ANOVA test (the number of replicates vs power).
Step 2: The number of treatment = 5.

Step 3: a-level=.05

Step 4: Standardized distance square = 2,

Step S: Maximum replicates is 12, minimun replicates is 2, increment is 1.
c. Start Program

Do you want to analyze one way ANOVA (y/n)?
y
Do you want to plot n (# of observation per treatment vs power) (y/n)?
y
Number of k (# of treatment)?
?
)
Alpha-level?
?
.05
Standardized distance square value?
?
2.
Maximum n value (the maximum value on X-axis)?
7
12
Minimum n value (the minimum value on X-asix)?

(condition: N must be more than 2)

-58-



Increment n value?
0

1
d. Output

The screen output (Table 8) is as follows:

Table 8. Output of the One-way Anov Example (Replicates vs Power)

dof 2 dof 2 a F-inverse A power
4 5 0.05 5.29087 4.00 0.15373
4 10 0.03 3.52496 6.00 0.30024
4 15 0.05 3.10397 8.00 0.44935
4 20 0.05 2.91676 10.00 0.58677
4 25 0.05 2.81108 12.00 0.70332
4 30 0.05 2.74323 14.00 0.79562
4 35 0.05 2.69600 16.00 0.86449
4 40 0.05 266122 18.00 0.91328
4 45 0.05 2.63455 20.00 0.94631
4 50 0.05 2.61345 22.00 0.96776
4 55 0.05 2.59634 24.00 0.98118

# of replicate power

NN=2 power = 0.15373

NN=3 power = 0.30024

NN=4 power = 0.44935

NN=5 power = 0.58677

NN=6 power = 0.70332

NN=7 power = 0.79562

NN=8 power = 0.86449

NN=9 power = 0.91328

NN=10 power = 0.94631

NN =11 power = 0.96776

NN =12 power = 0.98118



0.98118 +-+ + + + + + * Ky
power | * |
| * |

| * |

| * |

! I

I |

| * |

| I

| I

0.56746 + * +
| |

! |

I * |

| I

| |

| * |

| |

| |

| !

0.153713 +=* + + 4 + + ot
2.000 7.000 # of replicates 12.00

2. Example of one-way ANOVA test (noncentrality vs power)

a. Scenario

Five brands of batteries are under study. It is suspected that the lie (in weeks) of the five brands
is different. Five batteries of each brand are tested. A manufacturer want to know that power as
a function of the standardized distance square. " That is, the experimenter would like to know what
the power of the F-test is for a range of possible standardized distances square. He decides to check
standardized distances square from 1 to S in .2 increment, where n=5 and ¢« = .05.
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b. Inputs

Step 1. Select one-way ANOVA test (the standardized distance square vs power)

Step 2: Number of treatment = 5

Step 3: Number of replicates = 5

Step 4: «-level=.05

Step 5: Maximum standardized distance square is 5 and minimum standardized distance square is

1 and the increment is .2,
¢. Start Program

Start program:
Do you want to analyze one-way ANOVA (y/n)?
y
Do you want to plot n (# of observation per treatment) vs power (y/n)?
n
Do you want to plot alpha-level vs power (y/n)?
n .
Do you want to plot noncentrality vs power (y/n)?
y
# of observations per treatment (n =) ?
?
5
# of treatment (k = )?
?
5 :
Alpha-level ?
?
.05
Maximum standardized distance square value range?
9 .
5
Minimum standardized distance square value range?
9 ,
1

Increment standardized distance square value range?
?
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d. Output

The screen output (Table 9) is as follows:

Table 9. Output of the One-way Anova Example (noncentrality vs power)

dof 1 dof 2 a F-inverse A power
4 20 0.05 2.91676 5.00 0.30382
4 20 0.05 2.91676 6.00 0.36314
4 20 0.05 2.91676 7.00 0.42203
4 20 0.05 2.91676 8.00 0.47946
4 20 0.05 2.91676 9.00 0.53461
4 20 0.05 2.91676 10.00 0.58677
4 20 0.05 2.91676 11.00 0.63550
4 20 0.05 2.91676 12.00 0.68050
4 20 0.05 2.91676 13.00 0.72163
4 20 0.05 2.91676 14.00 0.75885
4 20 0.05 2.91676 15.00 0.79223
4 20 0.05 2.91676 16.00 0.82192
4 20 0.05 2.91676 17.00 0.84812
4 20 0.05 2.91676 18.00 0.87108
4 20 0.05 2.91676 19.00 0.89107
4 20 0.05 2.91676 20.00 0.90835
4 20 0.05 2.91676 21.00 0.92321
4 20 0.05 2.91676 22.00 0.93591
4 20 0.05 2.91676 23.00 0.94672
4 20 0.05 2.91676 24.00 0.95586
4 20 0.05 2.91676 25.00 0.96356

noncentrality power

NN=5.0
NN=60
NN =17.0
NN = 8.0
NN=90
NN =10.0

power = 0.30382
power = 0.36314
power = 0.42203
power = 0.47946
power = 0.53461
power = 0.58677
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NN=11.0
NN=12.0
NN =13.0
NN =14.0
NN =15.0
NN = 16.0
NN =17.0
NN =18.0
NN =19.0
NN =20.0
NN=21.0
NN =22.0
NN =23.0
NN =24.0

'NN=25.0

power = 0.63550
power = 0.68050
power =0.72163
power = 0,75885
power = 0.79223
power = 0.82192

power = 0.84812 .

power = 0.87108
power = 0.89107
power = 0,90835
power = 0.92321
power = 0.93591
power = 0.94672
power = 0.95586
power = 0.96356

0. 96356
power

0.63369

0.30382

" "
+ +

+

5. 000

x-scale: “.”” = 0.250E + 00 units
y-scale: “1” = 0.110E -01 units

15.00
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5. Summary and Conclusions

Power considerations are useful in the design and assessment of statistical tests. The calculation
of power usually involves noncentral distributions for which tables of probability are not available. VA
search was made for algorithms approximating the noncentral t, F and X? distributions. Algorithms
giving sufficient accuracy and making efficient case of computer resources have been implemented in
this thesis. Listings of the FORTRAN code for these implementations are included.

An interactive program to compute and display power curves for several t-test and F-test situa-
tions has been developed. This program is user friendly and is described in this thesis; a listing of the
program is provided. This program should be useful to researchers, experiment designers and

statisticians.
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