Uterine Contractility during Estrus Cycle: Effects In Vitro of Sex Steroids, Oxytocin and Prostaglandin $F_{2{\alpha}}$

성주기에 따른 자궁근 수축력의 변화에 관한 연구 : 성홀몬 및 약물들의 영향

  • Kim, In-Kyo (Department of Physiology, Yonsei University College of Medicine) ;
  • Park, Hye-Soo (Department of Physiology, Yonsei University College of Medicine) ;
  • Koo, Bon-Sook (Department of Physiology, Yonsei University College of Medicine) ;
  • Lee, Ek-Ho (Department of Physiology, Yonsei University College of Medicine)
  • 김인교 (연세대학교 의과대학 생리학교실) ;
  • 박혜수 (연세대학교 의과대학 생리학교실) ;
  • 구본숙 (연세대학교 의과대학 생리학교실) ;
  • 이익호 (연세대학교 의과대학 생리학교실)
  • Published : 1987.06.30

Abstract

It has been well known that estrogens stimulate the uterine contractility and progestins inhibit it. Then, one may expect that the uterine contractility and sensitivities to oxytocin (OT) and prostaglandin $F_{2{\alpha}}\;(PGF_{2{\alpha}})$ would be different among the estrus cycle. These hypotheses were tested using the mature female rat. Spontaneous isometric contractions of isolated uterine strips $(1{\times}0.3\;cm)$ from cyclic rats in various stages of the estrus cycle, bilateral ovarectomized rats and hypophysectomized rats were recorded in absence or presence with $estradiol-17{\beta}\;(E_2)$, progesterone $(P_4)$, OT and $PGF_{2{\alpha}}$. The results were summarized as follows: 1) The spontaneous uterine contractile force was the highest in the estrus rat and the lowest in the ovarectomized or the hypophysectomized rat. In the proestrus rat, the contractile frequency was the lowest (2.7 beats/10 min) and the contractile duration was the longest (70 sec). In the other groups, there were no any differencies in frequency (9 beats/10 min) and in duration (30 sec). 2) OT and $PGF_{2{\alpha}}$ stimulated the uterine contractility in all groups tested except in the hypophysectomized rat in which OT failed to stimulate the uterine contraction. $PGF_{2{\alpha}}$ was more effective in stimulating the uterine contraction than OT in all groups tested except in the estrus rat. OT-induced contraction was the highest in the estrus rat and $PGF_{2{\alpha}}-induced$ contraction was the lowest in the hypophysectomized rat. 3) Uterine contractilities were not changed by the in vitro treatments of $E_2$ or $P_4$ under the influence of endogenous steroids, however, $E_2$ and $P_4$ stimulated the uterine contraction in the ovarectomized rat in which endogenous steroids were almost abolished. 4) Increased uterine contraction by the treatment of OT was suppressed by in vitro $E_2$ or $P_4$ in the estrus rat, while it was potentiated by the $P_4$ in the proestrus rat. In other groups, exogenous $E_2$ or $P_4$ did not affect the OT-induced uterine contraction. 5) $PGF_{2{\alpha}}-induced$ uterine contraction was suppressed in the ovarectomized rat by $E_2$ and $P_4$, in the diestrus and proestrus rats by $P_4$ and in the hypophysectomized rat by $E_2$. In other groups, exogenous $E_2$ or $P_4$ was ineffective in altering the $PGF_{2{\alpha}}-induced$ uterine contraction. According to the above results, it may conclude that the mechanisms of the different uterine contractility and the different uterine sensitivity to OT or $PGF_{2{\alpha}}$ according to the estrus cycle are not explicable with only the serum concentrations of steroids, OT and $PGF_{2{\alpha}}$ but also other unknown factors.

Keywords