(FRFEEI Journal of the Korean Institute
of Industrial Engineers
Vol. 12, No. 2, Dec. 1986

A Two-Process Two-Product Inventory Model on a
Single Facility with By-Product

Dug-Hee Moon*
Hark Hwang*

Abstract

This study is concemned with a single-facility production system in which two kinds of products,
product 1 and 2, are produced by two different processes, process 1 and 2. Product 2 is produced
either by process 2 or by process 1 as by-product, while product 1 is obtained only through process 1.

The repeating sequences of the two processes and their associated lot sizes are determined which
minimize the total inventory related cost,

A solution algorithm is developed and is illustrated with numerical examples.

1. Imtroduction

This paper studies production lot sizes and repeating sequences for a production system which
produces two kinds of products using two different processes on a single facility. The system we
consider is shown in Figure 1. There are two products, product 1 and 2, and two production processes,
process 1 and 2. Process 1 is capable of making both products, while process 2 produces product 2
only. When process 1 is in operation, (1-b) and b units, 0<b<1, of products 1 and 2 are obtained re-
spectively for each unit produced.

Deuermeyer and Pierskalla [1] approached a similar system with optimal control but their study
was not based on the production on a single facility. Recently, Goyal [2] developed an Economic
Production Quantity (EPQ) model for two-product single-machine system, and presented & search
procedure which permits unequal batch quantities for the more frequently manufactured product.

The objective of this study is to determine the production lot size of each product and the sche-
dule of the two processes on a single-facility that minimize the total variable costs.

1]. The Development of the Model

The mathematical model presented is based on the following assumptions.
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Each process is set up instantaneously.

The production rate and the demand rate for each process are known and constant.

Stock-outs are not permitted.

By-product ratio b is known and constant.

Time horizon is infinite.

The demand rate, Dy, of product 1 is less than the production rate, (1-b)Pq, of process 1, ie.,
D; <(1b)Py. '

7. The demand rate, D, of product 2 is less than the production rate, Py, of process 2,ie., Dy <P3.

Figure 1 shows the block diagram and related parameters of the production system of this study.,
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Figure 1. The By-product System

During an interval between two successive set-ups of a process, the other process can be scheduled
more than one time. From this point of view, we can identify two systems, (K, 1) and (1,K).

1. (K,1)System

The (X, 1) system describes a single-facility two-product system in which process 1 is set up K
times during the time interval between successive set-ups of the process 2.

Let T be one batch production time interval and T be an interval between two successive produc-
tions of process 1. We call T basic period. Vemuganti [5] studied the feasibility condition for two
products on one machine and this condition is applied to this system. Following his approach, the total
quantities of product 1 produced during T{ should be equal to the total demands during basic period
T. Thus

T (1-b)P =4 T,
Ty =D¢T ! (l-b)Pl = flT ' (1)
where f] = D] f (l-b)Pl.

Also, let T, be the duration of the production period of the process 2. Then the total demands of
product 2 during a cycle time, KT, are equal to the sum of quantities of product 2 produced by process
2 and by process 1 during KT;

DsKT =PyT + KbPy { Dle(I-b)Pi} ,
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Ty = {Dy-Dyb/ (10} KT /Py =£HKT, (2)
where f5 = { Dy -D1b /(1-b}} / Py.
Since T in (2) must be a positive value,
Dy > Db f (1-b). (3)
The sum of production time of process 1 and that of process 2 is |
Ty + Ty =1 T+ HKT. @

A feasible production schedule must satisfy T + Ty < T, and this relation can be expressed as

K<L (5)
where L = (1-f))/f,. (6)

Note that for the feasibility of the production schedule, L must be equal to or greater than one. If
K (the number of set-up for process 1) does not satisfy condition (5), unequal lot size rule can be
considered following Goyal’s [2] .

The change of the inventory level of product 2 during Ty depends on the relationship between Dy
and bP;. The inequality Dy > bP; means that demand rate of product 2 is not less than by-procuct
rate of process 1, so difference has to be satisfied from the inventory of product 2. On the other hand,
inequality Dy < bP; means that the demand rate of product 2 can be satisfied by the by-product of
process 1 when process 1 is in operation.

Based on the above observations, four cases can be identified as depicted in Figure 2.

conditions Dy = bPy Dy <bPy
K<L CASE 1 CASE3
K>L CASE 2 CASE 4

Figure 2. Cases of (K, 1) system

Since unit production cost may be considered as constant and shortage is not permitted, only the
set-up and inventory holding costs are included in the total cost. Then the cost components of (K, 1)
system are as follows.

For product 1  Setupcost=S /T (7
Holding cost = H{ A{T / 2 8
For product 2 Setupcost=Sy /KT ©)
Holding cost = HyB;T / 2 (10)
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where S] = get up cost of processj,j=12,
H]- = qynit holding cost of product j per unit time,j =12,
and A, and B; are to be determined for each case.

Then the total cost, CF;(K, T), per unit time of case i is given by

CF; (K, T) = 51 / T + Hy A{T/2 + Sp/KT + HpB{T/2

= (81 + SyK)/T+ (HyA; + HpB)T/2. (1)
CASE 1
Figure 3 shows the inventory levels of product 1 and 2 of case 1. The condition of K< L (or
Ty < T-Ty) permits process 1 to be scheduled in equal lot size. Whenever process 1 is in operation, the
by-products are added to the inventory of product 2. For each product, the average inventory level is
calculated and from (8) and (10),

Dy {1-Dy/(1-b)Py} =Dy(1-11), (12)

Ay

~ {Dp-Dyb/ (1)} *K/Py - {1-Dy/(1-b)Py} Dyb/(1-b)

+ {Dy- D1Bb/(1h)} K

Pofp(142) (K - ¢ Dy (1f1) (13)
where ¢y =b [/ (1-b).
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Figure 3. Behavior of inventory levels of CASE 1. Figure 4. Behavior of inventory levels of CASE 2.

CASE 2
Figure 4 shows the inventory levels of product 1 and 2 of case 2. Since K > L, unequal lot size

is adapted, The effect of the condition Dy > bPj to the inventory level of product 2 is similar
to that of case 1. The related inventory elements of case 2 are as follows.

Ay=KD; (1-f) (I +cp) /17, (14)
where ¢ =(L-1)* /(K- 1).
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By =K [ (P - Dy) fo” L7 + (- bPy ¢y + Dy - BP1)fy
+2(D, - bPp) (L- 1)fy + Dae2 + (K -2) 0Pof3] JL%. (15)

The similar analysis can be applied to the other cases and the following results are obtained.

CASE 3
Az = Dy (1-11), (16)
By = [-KbPyfj2+(K*K+2)Pofy +2(bPy +KeiDy - D,K)fy
S PyfyPK2 +(K-2)Dy | /K. a7
CASE 4
Aq = Dy(L-f1) AL +epK /L7, (18)
B4 = K [(PZ‘bPI'bPICZ)fIE +2(bPy-Py)fq + (Py-Dy)
+ oDy + (K -2)epPpfy 1 /L7 . (19)

2. (1,K)System
The (I, K) system describes a single-facility two-product system in which process 2 is set up K
times during the time interval between successive set-ups of the process 1.
Let T be the production time interval of process 1. Then we can easily see that the total quanti-
ties of product 1 produced during a common cycle KT are equal to the total demand during KT;
(1-b)PyT1 =DKT,
Ty =f1KT. (20)

Also, let T be the production time interval of process 2. Then total demands of product 2 during KT
are equal to the sum of quantities of product 2 produced by process 1 and by process 2 during KT.

KP,T, +bP;T; =KP,Ty +bPy { Dy / (1 - b)Py} KT =DoKT,
Ty =1,T. 1)

The sum of the production time of process 1 and that of process 2 is
Ti+Ty= KT + f,T. (22)

Hence, the feasibility criterion for (1, K) system can be obtained by the similar procedure of (K, 1)
system, Let

M=(l-fp)/f]. (23)



(1, K) system is different from (K, 1) system in that the relation of D5 and bPy is not significant
since by-product of process 1 occurs only once during KT.
Thus, two cases can be identified as shown in Figure 5.

condition K<M K>M

CASE 5 CASE 6

Figure 5. Cases of (1, K) system

The cost components of each case of (1, K) system are as follows.

For product 1 Set up cost = 8 /KT (24)
Holding cost = Hy AT / 2 (25)
Forproduct2  Setupcost=S5/T (26)
Holding cost = HyB;T / 2 27

Then the total cost per unit time of each case is given by

CFi(K,T) = SIfKT+HIAin2+S2 f T+HQBin2
(Sl,fK+S'2),r‘T+(H1Ai‘?HzBi)T,l"z. (28)

CASE 5
Figure 6 shows the inventory levels of two products and the related inventory elements are as
follows.

As = Di(1-fXK, (29)
Bs = - Pyfp?-2Dyeify - Dyerf4 Dy +(K - )Dyey. (30)
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Figure 6. Behavior of inventory levels of CASE 5.  Figure 7. Behavior of inventory levels of CASE 6.



CASE 6,
Figure 7 shows the inventory levels of the two products and

Ag = Di(1-f)K, (3N
Bg = K[ ¢ - Py +bPy - c3Pa} fz +2(P, - bRy
- (Dg - BP) + 3Dp + (K- 2)Dyc¢3 ] IM2, (32)

where c¢3 =(M- D2/XK-1).
II. Algorithm

Note that the basic period T,0 < T < oo, is a real variable and the multiple K, K = 1,2,3,.,isan
integer variable. Kumin [3] studied the optimization procedure in which the objective function is
composed of a discrete variable and a continuous variable, Park [4] proposed the following property.

Property In the problem of rlgnsn f(us) where 0 <u <o, 0 <5< o, if the follovnng conditions
are satisfied, f is unimodal function;
i) For any finite s, f is positive infinite when u =0 or o,
ii) fis bounded below and of the function type to “hold-water”.
iii) fis continuously differentiable, 3%f/3s* >0 and 3*f/ du® >0.

Each CFj(K, T) goes to infinite when T goes to either infinite or to zero and is bounded below.
Also the partial second derivatives with respect to K and T become positive. Following the above
observations, CF;(K, T) is a unimodal function for every i. Thus, differenciating CFy(K, T) in equation
(11) with respect to T and setting the result equal to zero, we obtain

TyK) = V2051 + S/K) | (A + BBy, i=1234. (33)

For any given K, the minimum total cost CG;(K) becomes

CGI(K) = CFi(K, T(K) = -\/7(51 + Ssz) (Hpay+ HzBi) , i=1,2,34. (34)

Following the similar way for (1, K) system,

T{K) =V 2(51/K ¥ §) ] (Hy A+ HB) (35)

and

CGy(K) = CF(K, T(K)) = v/ 2(5/K + Sp) (H1 A; + HpBp fori=5§. (36)
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Note that CG;(K) is also unimodal and the optimal solution K¥ must satisfy
CGi(K* - 1] > CG{(K*) <CGy(K* + 1).

A solution procedure is developed and shown in the flow diagram in the Figure 7.

| Read data. I

|

Check Dy and bPy.
2 ]

STEP 1
DybP) Dy<bP;
Use CASE 1,2,5 and 6.] | Use CASE 3,4,5 and 6.|
t
. p For (K,1) system
STEP 2 determine feasibility criterion L.
STEP With equal lot size case, find K© such that
3 C63(R%+1) » C6;(X%) < €6, (X°-1},
EP
ST 4 -
. yes
no
STEP 5 Obtain CG;([LD).
[*1 : Gauss function
STEP 6 Try unequal lot size case, find K2 suct that
CG.(K°-1) > CGj(!(o) < CGj(K°+1)
where K°°> [L] + 13
STEP 7 [ ®* = mial 065([L]),06;(x%) .
yes m
ng
STEP 8 «*=[L],, K=K, | £'=1°, |
Obtain T Obtain T Obeain T
from Ti({L]). from Tj(K?). from T;(X°),
TC1 = CG;([L]}.] [ TCL = ccj(x*’). TCL = £G;(K°).
T f P

o
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¢

STEP 9 For (1,X) system,

determine feasibility eriterion M.

3

STFP 10 Co to Step 3 with M instead of L and
ST 1 obtain TC2 at STEP 8 in the similar way.

X

STEP 11 l 26 = min{ 7C1,7C2 }. 1

STEP 12 ] Determine the optimal schedule. _l

Figure 7. A Solution Procedure

TV. Numerical Example,
To illustrate the use of the above model developed, the example problem is solved using the

solution procedure mentioned above.
Table 1 presents the input data for the two processes and two products.

Table 1. Input data of example 1

B[ v | 0§ | Dy

Process 1 7000 | 0.1 15000 | 3500 | 5 Product 1

Process2 | 10000 | O 25000 || 2000 | 1 Product 2

L

STEP 1 : Since Dp > bPy, use the case 1,2 and 5,6.
STEP 2 : For (K, 1) system, feasibility criterion L= 2.76.
STEP 3 : Minimum cost value of CG1(K") = 233262 at K°=3.
STEP 4 : Since K°=32>L=2.76, Go to STEP 5.
STEP S : [L] =12.76] =2,and CG{{[L]) =23810.5.
STEP 6 - K° = 3, and corresponding cost CG(K®) = 23326 4.
STEP7 : TCl =min {CGq(L]),CGx(K")} =233264.
STEP 8 : K*=K° = 3 (unequal lot size},
T#* = T5(3) = 2.000 and CG»(3) = 233264,
STEP 9 : For (1, K) system, the feasibility criterion M = 1.51.
STEP 10: Minimum value of CG5(K*)=270950at K” = 1.
Since K° = 1 < M= 1.51, minimum total cost of (1,K}), TC2 = CG4(1)=27095.0.
STEP 11: TC =min {TC1,TC2} =min {23326.4,27095.0}
=23326.4.
STEP 12: Therefore, the optimal policy is (K, 1) system
where (K*, T*) = (3,2.000), '




and use “Unequal Lot Size” (CASE 2).

Suppose the manager of a manufacturing company is operating the single facility two product
system which has to deal with by-product. Due to the complexity caused by the by-product, if he opts
to use Goyal’s model [2], it is interesting to know how much the inventory cost is increased. To com-
pare the two models on a compatible basis, we assume that Dl is modified as Dy /(1-b) and Dy as
D4-DyB/(1-b). .

To answer the above question we solve two examples. The imput data of the problems and the
results are shown in Table 2. As expected, the additional cost burden is increasing as b increases. And
also R increases as the inventory holding cost of product 2 increases.

Table 2. Comparison of the two models

Example 1 Example 2

Py = 7000 Py = 10000 Py = 7000 Py = 10000

Dy = 3500 Dy = 2000 Dy = 3500 Dy = 2000

81 = 15000 85 = 25000 §; = 15000 8y = 25000

H;i =5 Hy = 1 H =5 Hy = 3
b The model Goyal’s R(%) The model Goyal’s R(%)
Q. 25308.1 25308.1 0. 317687 31768.7 0.
0.1 233264 2385909 24 29073.5 30038.4 33
0.2 207538 21478.9 3.5 252246 27286.7 82
0.3 16766.3 17648 4 5.3 156114 221999 132

R = cost of Goyal’s model - cost of the model 100

cost of the model
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