Journal of the KSQC
Vol. 14, No. 2, 1986

(s, S) Spare Part Inventory System®*

Park, Young-Taek**

ABSTRACT

This paper deals with a continuous review (s,S) spare part inventory system. The distributions
of service life of each part and the replenishment lead time are assumed to be exponential. Assuming
that there is never more than a single order outstanding, we obtain the average annual cost of operating
the inventory system. If the length of stockout period is small enough to be neglected compared to the
length of operating period, the optimal operating policy variables minimizing the cost rate can be cal
culated iteratively. For the case of one-for-one ordering (that is,s=S-1) an exact cost rate, and a closec
form decision rule minimizing the cost rate are obtained for a more general situation in which more
than one order is allowed to be outstanding and the distribution of the replenishment lead time is general

1. INTRODUCTION

This paper deals with a spare part inventory system, in which stock depletion arises not from the
external market demand but from internal demand resulting from failure of the part in use. Suppose
that a piece of equipment is required to be used for an infinite time span. The equipment has a vita)
part which fails according to some probability law. If an order for spare parts is placed, the delivery
takes place after a random lead time. Since having the equipment inoperative is a significant cost factor.
it seems desirable to reorder spare parts before the stock level falls to zero. Further, because of fixed
ordering cost, which is independent of the quantity ordered, quantity purchases might be desirable, but
holding or storage cost furnishes a restraint on ordering too much. Thus, in order to minimize the total
cost, we must determine when to order for spare parts and how many spare parts to purchase on each
order.

This problem differs from the classical inventory problem in that the demand for the part never arises
during stockout period, since the equipment remains inoperative when stockout occurs until the failed
part is replaced by new one. Karlin [3] introduced (s,S) inventory model for this problem and derived
some probability quantities associated with the spare part inventory model, but some of his results con-
tain some errors. Falkner [1] treated a similar problem, but his study was a single-period model in
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which the procurement of spare parts was allowed once only at the beginning of planning horizon and
the problem was to determine initial stock level. Park [6] considered (S-1,S) spare part inventory model
for fleet maintenance, which is a particular case of (s,5) inventory model with s=S-1, and presented a
heuristic algorithm to determine the optimal stock level.

In this paper, we consider (s,S) spare part inventory problem treated by Karlin [3], and correct
Karlin’s results and present an iterative procedure to determine a pair of values (s,S) which minimizes
the cost rate for an infinite time span, FEor the case of one-for-one ordering (that is, s=5-1), a closed
form decision rule which minimizes the cost rate is obtained.

II. (s,S) Spare Part Inventory Model

In this model, the stock level (that is, the number of spare parts) is reviewed continuously, and an
order for a quantity @(=S-s)is placed when the stock level including the part in use drops to a reorder
point 5. The following assumptions and notations are used.

Assumptions

1. The unit cost of a part is a constant independent of the order quantity.
2. The distribution of service life of a part is exponential.

3. The distribution of a replenishment lead time is exponential.

4. There is never more than a single order outstanding.

Notations

reorder point,

reorder level; inventory position (on hand plus on order) just after an order,
§-s; order quantity per order,

failure rate of a part,

random variable denoting a replenishment lead time,

g(x) pexp(-¢x); p.d.f. of a replenishment lead time,

KK (2x)* exp (-2x)/ k! ; Poisson p.m.f. with parameter 1x,

R Dl =

P(s) 53 (k) ; complementary Poisson c.d.f.,

¥(v)  probability that v units are on hand just after the arrival of an order,

o fixed ordering cost per order,
ch holding cost of a part per unit time,
¢, shortage cost per unit time of having the equipment idle.

Other notations are defined as needed.

Imbedded in the implementation of the (s,S) policy is a natural cycle which commences when an
order is delivered and lasts until the next order is delivered. The special nature of the exponential life-
time distribution, which in effect implies that any conditional density is independent of the conditional
statement (; the so-called “lack of memory”), enables us to start the process anew when delivery takes
place, regardless of the age of the part in use [3].

We shall now derive the exact equantions for the (s,S) spare part inventory model. Qur formulation
here parallels the ‘lot size reorder point models with stochastic demands’ of Hadley and Whitin [2].
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The expected cost per cycle is the sum of the ordering, holding, and shortage costs. Since the number
of orders per cycle is one, the ordering cost per cycle is ¢o. The expected holding cost per cycle will
be computed in two parts, First, for the time period up to the time the reorder point is reached, and
second for the period of the exponential replenishment lead time x from the time the reorder point
is reached until the next order arrives. Given that » units are on hand including the unit in use after
an order arrives, the expected unit years of spares in stock held until thé reorder point is reached is:

CCo-10+Co=2)F-reee +s)/A=(v(v-1)-s(s-1))/24. (1)
The probability that » units are on hand just after the arrival of an order is:
[ P(s; 2% )g(x)dx, if v=@Q

¥(v)= { 0 (2)
[Zp(@+s-v; 2x)g(xddx, if Qv <Q+s.
)

Averaging Equation (1) over the initial inventory », the expected unit years stock held until the reorder
point is reached is:

2 #0) oo D-5(s-1DY 24

= [(Q(Q-1)-s(s-1)) f:P(s;lx)g(x)dx/Zl

+ "53 [v(v—1)-5(5—1)]]’:p(0+s—v;lx)g(x)dx/z,l . (3)

p=Q+1

The expected unit years of spares in stock held from the time the reorder point is reached until the
next order arrives is the integral from O to the replenishment lead time x of the expected amount of

spares on hand at time ¢, i.e.,

=1

f: f; §o (s=w 1D)plus At D g(x)d tdx

=l o

=(s/%) EJOJ;I_’( utl; lx)g(x)dx—(l/l):é: .{,m(u+1)P(u+l s Ax)g(x) dx. @

On summing Equations (3) and (4), and making some algebraic manipulations, we find that the expected
number of unit years of stock held per cycle is:

I:Q[ (@-1)/22+5/2- x+xP(s-1;Ax)-(s/DP(s; Ax))g(x)dx

=Q(@-1)/22+s/2-1/pn+27p(2+p)°]. (5)
Thus the expected holding cost per cyclie is:

¢, QU(Q-1)/22+s/2-1/p+2" /e (A+#)] 6
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Let us now compute the expected shortage cost per cycle. If the system reaches an out of stock
condition in the time interval between ¢ and t+d¢ after the reorder point is hit, this implies that in the
time O to ¢, s-1 units have been demanded and the s-th Oone is demanded between ¢ and ¢+d¢, it will
be out of stock for a length of time x-¢ during the cycle. Hence the expected length of stockout per
cycle is:

f: I: AWx-t) p(s-1: 20 g(x)dtdx = 2°/p(A+1)* . @

Thus the expected total cost per cycle is:

o+ ey QULR-1)/22+ s/ 2-1/p4 2° [ A+ " It ¢ 25/ (A4 1) °, (3)

Since the time between successive replenishments is a cycle, the expected duration of a cycle is
the expected time between the arrival of an order and the next order plus the expected replenishmer:t
lead time. Thus the expected cycle length is:

U Com )/ g e = QA+ 2 1 Rk £

From the renewal reward theorem [7, p. 52], the expected cost rate for an infinite time span is
the expected cost per cycle divided by the expected cycle length. Hence, the expected cost rate is:

co+ G @ULR-1)/ 224 5/ A= 1/ 23/ A+1)* ¢ 2°/ 1 241D

SO 1)
QA+ /e atp)’

II. THE ITERATIVE OPTIMIZATION PROCEDURE

Since having the equipment inoperative is a significant cost factor, it might be assumed that the
length of stockout period is small enough to be neglected compared to the length of the operating pericd
as Hadley and Whitin [2, p. 168]. Then, the expected cycle length in Equation (9) approximates 10
Q/1 and the expected cost rate in (10) approximates to the following convex function:

CQ, s)=2¢, [R+¢, ALCQ-1)/2 345/ 2-1/tH2° [ A+1)°T + ¢, %} /Q p( A+’ . a

A condition for @ and s being optimal is that they satisfy
9C/9Q=-[4c,+ ¢,/ p(A+1)") [@*+¢,/2=0 2

and

3C/ ds=c,~(cy + e /XY p(A+)° 1,(1+p/2)=0 . 13)
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Here we have two equations to be solved for @ and 5. It is convenient to write Equations (12) and
(13) as:

Q=4 220 c,tc, 2 /()" )/, (4)

and

s=1a[(A/)( 1 tc /e, @ L (1+/ DT /1 (14 1/ 2) {t5)

Since C(Q,s)is convex, the solutions @* and s* obtained from Equations (14) and (15) yield an absolute
minimum, and @*+ s*is the optimal value of §.

To find the optimal pair (Q*,s*), the following iterative procedure of Hadley and Whitin {2, pp.
169-172] can be used.

(1) The initial estimate for @ is - @=+/ 24¢, /¢, (Wilson’s lot size formula). Call this value g, .

(2) Use Equation (15) with Q=0, to find the reorder point s. Call this value s, .
(3) Use Equation (14) with s=s; to find @, .

(4) Repeat Step (2) with Q=@,. etc. Convergence occurs when at iteration i, Q,=Q,_,0r Si=s;i,

A test for the convergence of the iterative procedure can be carried out using the following argument
as in Kim and Park’s |4].
Equations (14) and (15) can be thought of as describing two curves in the (@,s) plane. For the curve
described by Equation (15), we note that

when @=, s =00

and

when  Q=Q=c,(2/p) 1, U+ 2/ 2D/ ¢, L1-(A/ ) 1a 11/ 2D, s=0.

Furthermore, differentiating Equation (15) yields:
ds/dQ< 0,

For the curve described by Equation (14), note that
when s=0, Q=Q=422(c,+¢,//<,

and

when s=o0, Q=Q, =+ 21c,/c,

Furthermore, differentiating Equation (14) yields:

dQ/ds {0

or, equivalently

ds/dQ<{ 0 ,
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Ploting of the two curves is shown in Figure 1. It is obvious that the iterative procedure discussed
above must converge to @* and s*. Since C(Q,s)is convex, the solutions @* and s* to Equations (14)
and (15) are always unique.

\ Equation (14)

L

wtion (15)
L AN 0
@ Q, Q Q

Figure 1. Convergence of the solution

IV. APARTICULAR CASE: (5-1,5) SPARE PART INVENTORY MODEL

In this section, we consider a special case of (5,5) model in which s=S-1. In the (§-1,S) policy, a
reorder is placed whenever a demand occurs (i.e., one-for-one ordering) and the inventory position re-
mains constant. This particular policy is commonly used and considered suitable in low-demand or
high-cost item inventory such as aircraft spare parts inventory [8].

Since there exists no demand during stockout period in the state-dependent demand model, the
steady-state probabilities for on-hand inventory (including the operating unit) are the same as the steady-
state probabilities in the lost sales case of Hadley and Whitin [2, pp. 211-212]. Thus the steady-state
probabilities that the on-hand inventory is k (k=0,1, - - -, S) are:

w(k)=p(S-£)/(1-P(S+1)], {16)
known as the truncated Poisson distribution,

In the derivation of the steady-state probabilities, more than one order was allowed to be cut-
standing. Further, exponential replenishment lead time was assumed in the derivation, but the same

result holds for arbitrary replenishment lead time [5].
The expected cost rate for an infinite time span, C(S), is:

C(S)= ¢, A1-T(D)+c, é:l k-1 +c, (D)

=, S+ ¢, (142/ 1) + ¢, = ¢, AT O+ ¢y 4-¢, (1+2/1)]. )
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Note that x(0)(=p(S)/ (1-P(S+1)))is the Erlang loss formula and it is decreasing convex in S [9].
If ¢,~¢, 4 0, there should not be any one-for-one ordering policy, since it implies that incurring the
cost of shortage all the lifetime (¢,/2 is cheapter than the ordering cost (¢,). Thus, in order to warrant

one-for-one ordering, c,-c°2>0.

Therefore the cost rate function in (17) is a convex function, since

it is the sum of a linear increasing function, a decreasing convex function, and a constant. Hence, the
optimal stock level S* is the smallest S that satisfies:

or

C(S) -c(S+1) <0

pCS)/ (1-P(S+1)3-p(S+13/(1-P(S+2)1< ¢,/Ce,(1+ /1) +c,~c, 2] .
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