Kyungpook Math. J.
Volume 26, Number 2
December, 1986

A NOTE ON THE MODULAR GROUP RING OF A FINITE p-GROUP

By W. B. Vasantha

In [1] Johnson has proved when G is a group of prime power order p and K a field having only p-elements then G^{*}, the $\bmod p$-envelope of G has a group structure. It is interesting to note when G is a group of order 2 and K a field with more than 2 elements then G^{*}, the $\bmod p$-envelope of G has a semigroup structure with a non-trivial idempotent in it. Further in this case the number of elements in G^{*} is equal to the number of elements in the field K. For the sake of completeness we prove the following propositions. For definitions please refer [1].

PROPOSITION 1. Let $G=\left\langle g \mid g^{2}=1\right\rangle$ be a group of order 2 and $K=(0,1)$ be a field with two elements, Then $G^{*}=G$.

PROOF. Consider $U=\{0,1+g\}$

$$
\begin{aligned}
& G^{*}=1+U=\{1, g\} \\
& \text { Thus } G=G^{*} \text { is a group. }
\end{aligned}
$$

PROPOSITION 2. Let $G=\left\langle\boldsymbol{g} \mid g^{2}=1\right\rangle$ be a group and $K=(0,1,2,3,4)$ (K is a field of 5 elements). Then G^{*} is a semi-group with order of G^{*} equal to 5 .

PROOF. Consider $U=\{0,1+4 g, \quad g+4,2+3 g, 3+2 g\} . \quad G^{*}=1+U=\{1,4 g+2$, $g, 3+3 g, 4+2 g$ \}. Clearly G^{*} is a semi-group with $3+3 g$ an idempotent in G^{*}. Further the order of G^{*} is equal to 5 .

THEOREM 3. Let $G=\left\langle g \mid g^{2}=1\right\rangle$ be a group of order 2 . K a field of p-elements, $K=(0,1,2, \cdots, p-1)$. Then G^{*} is a semi-group such that order of $G^{*}=p$. Further $\left(\frac{p+1}{2}+\frac{p+1}{2} g\right)$ is an idempotent in G^{*}.

PROOF. $G^{*}=\left\{1,(p-1) g+2, \quad 2 g+(p-1),(p-2) g+3, \quad 3 g+p-2, \cdots \cdots, \frac{p+1}{2}+\right.$ $\left.\frac{p+1}{2} g\right\}$. Clearly G^{*} is a semi-group with p-elements.
Further consider $\left(\frac{1+p}{2}+\frac{1+p}{2} g\right)^{2}=\left(\frac{1+p}{2}\right)^{2}(1+g)^{2}$

$$
\begin{aligned}
& =\frac{1+p}{2} \cdot \frac{1+p}{2}(1+g)^{2} \\
& =\frac{1+p}{2} \cdot \frac{1+p}{2} 2(1+g) \\
& =\left(\frac{1+p}{2}\right)(1+p)(1+g) \\
& \quad p=0(\bmod p) \\
& =\frac{1+p}{2}(1+g)
\end{aligned}
$$

is an idempotent G^{*}.
It is essential to make the following remark.
REMARK. Let $G=\left\langle g \mid g^{4}=1\right\rangle$ be a group of order 4. $K=(0,1)$ be a field of 2 elements. $K G$ be the group ring of G over K. Then G^{*} is a group of order 8 .

PROOF. Consider $G^{*}=1+U=\left\{1, g, g^{2}, g^{3}, \quad 1+g+g^{2}, \quad 1+g+g^{3}, \quad 1+g^{2}+g^{3}\right.$, $\left.g+g^{2}+g^{3}\right\}$

$$
\begin{aligned}
& (g)^{4}=1, \quad\left(g^{3}\right)^{4}=1, \quad\left(g^{2}\right)^{2}=1 \\
& \left(1+g+g^{2}\right)^{4}=1\left(1+g+g^{3}\right)^{2}=1 \\
& \left(1+g^{2}+g^{3}\right)^{2}=1 \text { and }\left(g+g^{2}+g^{3}\right)^{2}=1
\end{aligned}
$$

Thus every element is of order 2 or 4.
Further G^{*} is generated by any one of the following sets

$$
\begin{gathered}
\left\langle g, 1+g+g^{2}\right\rangle \\
\left\langle g^{3}, 1+g^{2}+g\right\rangle \\
\left\langle g, 1+g+g^{3}\right\rangle \\
\left\langle g^{3}, 1+g+g^{3}\right\rangle \\
\left\langle g, 1+g^{2}+g^{3}\right\rangle \\
\left\langle g^{3}, 1+g^{2}+g^{3}\right\rangle \\
\left\langle g, g+g^{2}+g^{3}\right\rangle \\
\left\langle g^{3}, g+g^{2}+g^{3}\right\rangle \\
\left\langle 1+g+g^{2}, 1+g+g^{3}\right\rangle \\
\left\langle 1+g+g^{2}, g+g^{2}+g^{3}\right\rangle \\
\left\langle 1+g+g^{3}, g^{3}+g^{2}+1\right\rangle \\
\left\langle 1+g^{2}+g^{3}, g+g^{2}+g^{3}\right\rangle
\end{gathered}
$$

Any one of the 12 pairs can generate $G^{*}, 0\left(G^{*}\right)=8$.
From this remark we observe that if G is a group of prime power order say
p^{n} and K a field of p elements, then G^{*} still continues to be a group. When the order of G does not divide the order of the field G^{*} ceases to be a group. G^{*} has only a semi-group structure.

EXAMPLE. Let $G=\left\langle\boldsymbol{g} \mid g^{3}=1\right\rangle$ be a group of order 3 . $K=(0,1)$ be a field of 2 elements. Then G^{*} is a semi-group.
Consider $1+U=G^{*}=\left\{1, g, g^{2}, 1+g+g^{2}\right\}$. Clearly G^{*} is a semi-group with $1+$ $g+g^{2}$ to be an idempotent in G^{*}.

From the above example we note that $0\left(G^{*}\right)=4$.

THEOREM 4. Let G be a cyclic group of order p, p a prime and let $K=(0.1)$ be a field of two elements. Then G^{*} is a semi-group with $1+g+g^{2}+\cdots+g^{p-1}$ as an idempotent.

PROOF. G^{*} contains elements such that the sum of the coefficients of those is one. Clearly G^{*} contains $1+g+g^{2}+\cdots+g^{p-1}$, the sum of the coefficients is p since p is prime and K is the field of characteristic 2 we have the coefficient of $1+g+g^{2}+\cdots+g^{p-1}$ is one.
Now consider

$$
\left(1+g+g^{2}+\cdots+g^{p-1}\right)^{2}=1+g+g^{2}+\cdots+g^{p-1}
$$

is an idempotent.

Clearly as the sum of the coefficient is one of the set G^{*} is closed with respect to multiplication having a unit element.

We make the following remark about this Theorem. If the order of the group is not a prime but an even integer say $2 n$ then obviously $1+g+\cdots+g^{2 n}$ is not an idempotent as is evidenced by an example.

EXAMPLE. Let $G=\left\langle\boldsymbol{g} \mid \boldsymbol{g}^{4}=1\right\rangle$ be a cyclic group of order four. $K=(0,1)$ be a field of order 2. Then $1+g+g^{2}+g^{3}$ is not an idempotent. For

$$
\begin{aligned}
\left(1+g+g^{2}+g^{3}\right)^{2} & =1+g^{2}+g^{4}+g^{6} \\
& =1+g^{2}+1+g^{2} \\
& =2+2 g^{2} \\
& =0 .
\end{aligned}
$$

In fact $\left(1+g+g^{2}+g^{3}\right)$ becomes a zero divisor.
THEOREM 5. Let $G=\left\langle g \mid g^{2 n}=1\right\rangle$ be a group of even order. $K=(0,1)$ be a field
of two element. Then G^{*} contains $1+g+g^{2}+\cdots+g^{n}+\cdots+g^{2 n-1}$ as a nontrivial zero divisor.

PROOF. Clearly G^{*} is a semi-group. To show $1+g+g^{2}+\cdots+g^{n}+\cdots+g^{2 n-1}$ is. a zero divisor in G^{*}.
Consider

$$
\begin{aligned}
\left(1+g+g^{2}+\cdots+g^{n}+\cdots g^{2 n-1}\right)^{2} & =\left(1+g^{2}+g^{4}+\cdots+1+\cdots+g^{2}+g^{4}+\cdots+g^{2 n-1}\right) \\
& =2\left(1+g^{2}+g^{4}+\cdots+g^{2 n-2}\right) \\
& =0
\end{aligned}
$$

(Since $g^{n+1} \cdot g^{n+1}=g^{2}$ and so on).
Clearly $1+g+g^{2}+\cdots+g^{n}+\cdots+g^{2 n-1}$ is a zero divisor in G^{*}.
Now we pose the following problem.
PROBLEM. Let G be any cyclic group. K any field having p elements such that p does not divide the order of G.

What can be said about the semigroup G^{*} ?
(1) Does G^{*} contain idempotent elements?
(2) Does G^{*} contain zero divisors?
(3) What is the order of G^{*} ?

Acknowledgements

I am grateful to Prof. V.K. Balachandran for his encouragement. My thanks are due to U.G.C. for financial assistance.

REFERENCE

[1] P, L. Johnson, The modular group ring of a finite p-group, Proc. Amer. Math. Soc. 68(1978), 19-22.

