ON M LOOPS

By Leong Fook

1. Introduction

In a loop $\langle G, \cdot\rangle$, the following identities are known to be equivalent:

$$
M^{1}: x y \cdot z x=(x \cdot y z) x ; M^{2}:(y x \cdot z) x=y(x \cdot z x) ; M^{3}: x(y \cdot x z)=(x y \cdot x) z .
$$

Loops satisfying these identities are called Moufang loops.
We observe that x appears twice on both sides of each of the identities. Weare interested in another set of new identities formed by replacing one x on each side by x^{θ} where θ is a map of G. There are altogether twelve of them as listed below:

$$
\begin{array}{lll}
M_{\lambda \lambda}^{1}: x^{\theta} y \cdot z x=\left(x^{\theta} \cdot y z\right) x & M_{\lambda \lambda}^{2}:\left(y x^{\theta} \cdot z\right) x=y\left(x^{\theta} \cdot z x\right) & M_{\lambda \lambda}^{3}: x^{\theta}(y \cdot x z)=\left(x^{\theta} y \cdot x\right) z \\
M_{\rho \rho}^{1}: x y \cdot z x^{\theta}=(x \cdot y z) x^{\theta} & M_{\rho \rho}^{2}:(y x \cdot z) x^{\theta}=y\left(x \cdot z x^{\theta}\right) & M_{\rho \rho}^{3}: x\left(y \cdot x^{\theta} z\right)=\left(x y \cdot x^{\theta}\right) z \\
M_{\lambda \rho}^{1}: x^{\theta} y \cdot z x=(x \cdot y z) x^{\theta} & M_{\lambda \rho}^{2}:\left(y x^{\theta} \cdot z\right) x=y\left(x \cdot z x^{\theta}\right) & M_{\lambda \rho}^{3}: x^{\theta}(y \cdot x z)=\left(x y \cdot x^{\theta}\right) z \\
M_{\rho \lambda}^{1}: x y \cdot z x^{\theta}=\left(x^{\theta} \cdot y z\right) x & M_{\rho \lambda}^{2}:(y x \cdot z) x^{\theta}=y\left(x^{\theta} \cdot z x\right)^{\theta} & M_{\rho \lambda}^{3}: x\left(y \cdot x^{\theta} z\right)=\left(x^{\theta} y \cdot x\right) z
\end{array}
$$

Hala Orlik Pflugfelder has proven that a loop G^{h} satisfying $M_{\rho \rho}^{2}$ is a Moufang loop and that $x^{-1} x^{\theta} \in N$, the nucleus of G [2]. She calls loops with this identity as M loops.

Pl. Kannappan has shown that the relations $M_{\rho \rho}^{i}, i=1,2,3$, in a loop are equivalent [3].

This paper proves that the identities $M_{\lambda \lambda}^{i}$ and $M_{\rho \rho,}^{i,} i=1,2,3$ in a loop are equivalent. The identities $M_{\lambda \rho}^{i}$ and $M_{\rho \lambda,}^{i}, i=1,2,3$ in a loop are also equivalent if θ is a onto map. Loop satisfying the identities $M_{\lambda \rho}^{i}$ and $M_{\rho \lambda}^{i}$ are M loops. Moreover, they possess the additional property of $x^{-1} \cdot x^{\theta} \in Z$, the centre of G.
2. Loops satisfying identities $M_{\lambda \lambda}^{i}$ or $\boldsymbol{M}_{\rho \rho}^{i}$

LEMMA 1. A loop $\langle G, \cdot\rangle$ satisfying the identity $M_{\lambda \lambda}^{i}$ or $M_{\rho \rho}^{i}$ possesses the I. P: (inverse property).

PROOF. (a) $M_{\lambda \lambda}^{1}: x^{\theta} y \cdot z x=\left(x^{\theta} \cdot y z\right) x$
Define ${ }^{-1} x$ by ${ }^{-1} x \cdot x=1$. Let $z=^{-1} x$. Then $x^{\theta} y=\left(x^{\theta} \cdot y^{-1} x\right) x$. It is clear from $M_{\lambda \lambda}^{1}$ that $x^{\theta} \cdot z x=x^{\theta} z \cdot x$. Thus $x^{\theta} y=x^{\theta}\left(y^{-1} x \cdot x\right)$ and $y=y^{-1} x \cdot x$.
Let $y=x$. We have $x .^{-1} x=1$. Hence G has the R.I. P. (right inverse property). Let $y=x^{-1} z^{-1}: x^{\theta}\left(x^{-1} z^{-1}\right) \cdot z x=x^{\theta}$ by R.I.P. So $(z x)^{-1}=x^{-1} z^{-1}$ by R.I.P. again.
Let $z^{-1}=x^{\theta} y: z^{-1} \cdot z x=\left(z^{-1} y^{-1} \cdot y z\right) x=(y z)^{-1} y z \cdot x=x$. Hence G has the L. I. P. (left inverse property).
(b) $M_{\lambda \lambda}^{2}:\left(y x^{\theta} \cdot z\right) x=y\left(x^{\theta} \cdot z x\right)$

Define ${ }^{-1} x$ by ${ }^{-1} x \cdot x=1$. Let $z=^{-1} x$. Then $\left(y x^{\theta} \cdot{ }^{-1} x\right) x=y x^{\theta}$. Put $y x^{\theta}=x$, we get $x .^{-1} x=1$. Hence G has the R.I. P..
Let $y=z^{-1}\left(x^{\theta}\right)^{-1} . \therefore x=z^{-1}\left(x^{\theta}\right)^{-1} \cdot\left(x^{\theta} z \cdot x\right)$ since $x^{\theta} \cdot z x=x^{\theta} z \cdot x$ from $M_{\lambda \lambda}^{2}$. Thus G has the L. I. P. .
(c) $M_{\lambda \lambda}^{3}: x^{\theta}(y \cdot x z)=\left(x^{\theta} y \cdot x\right) z$

Define x^{-1} by $x \cdot x^{-1}=1$. Let $z=x^{-1}$. Then $x^{\theta} y=\left(x^{\theta} y \cdot x\right) x^{-1}$. Put $x^{\theta} y=x^{-1}$. So $x^{-1} \cdot x=1$. Thus G has the R.I. P. . Let $y=x^{-1}$.
$\therefore x^{\theta}\left(x^{-1} \cdot x z\right)=x^{\theta} z \therefore x^{-1} \cdot x z=z$. So G has the R.I.P..
(d) $M_{\rho \rho}^{1}: x y \cdot z x^{\theta}=(x \cdot y z) x^{\theta}$

See [3].
(e) $M_{\rho \rho}^{2}:(y x \cdot z) x^{\theta}=y\left(x \cdot z x^{\theta}\right)$

See [3].
(f) $M_{\rho \rho}^{3}: x\left(y \cdot x^{\theta} z\right)=\left(x y \cdot x^{\theta}\right) z$

Define x^{-1} by $x \cdot x^{-1}=1$. Let $y=x^{-1}$.
$\therefore x\left(x^{-1} \cdot x^{\theta} z\right)=x^{\theta} z$. Let $x^{\theta} z=x . \therefore x^{-1} \cdot x=1$.
So G has the L.I.P. From $M_{\rho \rho}^{3}, x \cdot y x^{\theta}=x y \cdot x^{\theta}$.
So $x\left(y \cdot x^{\theta} z\right)=\left(x \cdot y x^{\theta}\right) z$. Let $z=\left(x^{\theta}\right)^{-1} y^{-1}$.
$\therefore x=\left(x \cdot y x^{\theta}\right)\left(x^{\theta^{-1}} y^{-1}\right)$ by the L.I.P.. So G has the R.I.P..
REMARK. In proving case $(f), \theta$ is required to be onto in [3, p. 105]. Apparently we don't need it here.

THEOREM 1. The identities $M_{\lambda \lambda}^{i}$ and $M_{\rho \rho}^{i}, i=1,2,3$, for a loop $\langle G, \cdot\rangle$ are equivalent.

PROOF. We use the autotopism lemma which says that if (U, V, W) is an
autotopism of an I. P. loop, then ($J U J, V, W$) and ($W, J V J, U$) are also autotopisms where J is the inverse mapping. Also $\left(U^{-1}, V^{-1}, W^{-1}\right)$ is also an autotopism [1, p. 112]. Note that $J L(x) J=R\left(x^{-1}\right)$ and $J R(x) J=L\left(x^{-1}\right)$.

$$
\begin{aligned}
& M_{\lambda \lambda}^{1} \Leftrightarrow\left(L\left(x^{\theta}\right), R(x), L\left(x^{\theta}\right) R(x)\right) \Leftrightarrow \Leftrightarrow\left(L\left(x^{\theta}\right) R(x), L\left(x^{-1}\right), L\left(x^{\theta}\right)\right) \\
& \Uparrow \Leftrightarrow M_{\lambda \lambda}^{3}\left(\text { replacing } x^{-1} z \text { by } z\right) . \\
&\left(R\left(x^{\theta}\right)^{-1}, L\left(x^{\theta}\right)(R(x), R(x)) \Leftrightarrow M_{\lambda \lambda}^{2}\left(\text { replacing } y x^{\theta-1} \text { by } y\right) .\right. \\
& \| \\
&\left(R\left(x^{\theta}\right),\right.\left.R\left(x^{-1}\right) L\left(x^{\theta}\right)^{-1}, R\left(x^{-1}\right)\right) \Leftrightarrow\left(R\left(x^{-1}\right), L(x) R\left(x^{\theta}\right), R\left(x^{\theta}\right)\right) \\
& \Leftrightarrow M_{\rho \rho}^{2}\left(\text { replacing } y x^{-1} \text { by } y\right) .
\end{aligned}
$$

The proof is completed with [3, Theorem 1, 2,3].

3. Loops satisfying identities $\boldsymbol{M}_{\lambda \rho}^{i}$ or $\boldsymbol{M}_{\rho \lambda}^{i}$

LEMMA 2. $M_{\lambda \rho}^{1} \Rightarrow M_{\lambda \lambda}^{\prime} ; M_{\rho \lambda}^{1} \Rightarrow M_{\rho \rho}^{1}$.
PROOF. Put $y=1$ in $M_{\lambda \rho^{*}}^{1}$. Then $x^{\theta} z \cdot x=x z \cdot x^{\theta}$.
$\therefore M_{\lambda \rho}^{1} \Rightarrow x^{\theta} z \cdot y x=(x \cdot z y) x^{\theta}=\left(x^{\theta} \cdot z y\right) x \Rightarrow M_{\lambda \lambda}^{1}$.
Put $z=1$ in $M_{\rho \chi^{1}}^{1}$. Then $x y \cdot x^{\theta}=x^{\theta} y \cdot x$.
$\therefore M_{\rho \lambda}^{1} \Rightarrow x y \cdot z x^{\theta}=\left(x^{\theta} \cdot y z\right) x=(x \cdot y z) x^{\theta} \Rightarrow M_{\rho \rho}^{1}$.
LEMMA 3. $M_{\lambda \rho}^{2} \Rightarrow M_{\lambda \lambda}^{1}$ if θ is onto.
PROOF. $M_{\lambda \rho}^{2}:\left(y x^{\theta} \cdot z\right) x=y\left(x^{\theta} z \cdot x\right)$. Define $\left(x^{\theta}\right)^{-1}$ by $x^{\theta}\left(x^{\theta}\right)^{-1}=1$.
Let $z=\left(x^{\theta}\right)^{-1} \cdot \therefore\left(y x^{\theta} \cdot\left(x^{\theta}\right)^{-1}\right) x=y x$. So $y x^{\theta} \cdot\left(x^{\theta}\right)^{-1}=y$.
Let $y=\left(x^{\theta}\right)^{-1}$. Then $\left(x^{\theta}\right)^{-1} \cdot x^{\theta}=1$. Thus it has the R.I.P..
Let $y=z^{-1}\left(x^{\theta}\right)^{-1} . \therefore x=\left(z^{-1}\left(x^{\theta}\right)^{-1}\right)\left(x^{\theta} z \cdot x\right)$ by using the R.I.P.. Thus it has the L.I. P. .
Replacing $y x^{\theta}$ by y, we have $y z\left(R(x)=y R\left(x^{\theta-1}\right) z L\left(x^{\theta}\right) R(x)\right.$.
$\therefore\left(R\left(x^{\theta}\right)^{-1}, L\left(x^{\theta}\right) R(x), R(x)\right)$ is an autotopism.
$\therefore\left(L\left(x^{\theta}\right), R(x), L\left(x^{\theta}\right) R(x)\right)$ is an autotopism.
$\therefore x^{\theta} y \cdot z x=\left(x^{\theta} \cdot y z\right) x$.
$\therefore M_{\lambda \rho}^{2} \Rightarrow M_{\lambda \lambda}^{1}$.
LEMMA 4. $M_{\rho \lambda}^{2} \Rightarrow M_{\rho \rho}^{1}$ if θ is onto.
PROOF. $M_{\rho \lambda}^{2}:(y x \cdot z) x^{\theta}=y\left(x^{\theta} \cdot z x\right)$.
$y=1 \Rightarrow x z \cdot x^{\theta}=x^{\theta} \cdot z x . \quad \therefore(y x \cdot z) x^{\theta}=y\left(x^{\theta} \cdot z x\right)=y\left(x z \cdot x^{\theta}\right)$,
Define x^{-1} by $x \cdot x^{-1}=1$. Let $z=x^{-1} . \therefore\left(y x \cdot x^{-1}\right) x^{\theta}=y x^{\theta}$.
$\therefore y x \cdot x^{-1}=y$. Let $y=x^{-1}$. Then $x^{-1} \cdot x=1$. Thus it has the R.I.P. Let $y=z^{-1} x^{-1} . \therefore x^{\theta}=z^{-1} x^{-1} \cdot\left(x z \cdot x^{\theta}\right)$ by using the R.I.P. .
\therefore It has the L.I.P..
Replacing $y x$ by y, we have $y z R\left(x^{\theta}\right)=y R\left(x^{-1}\right) z L(x) R\left(x^{\theta}\right)$.
$\therefore\left(R\left(x^{-1}\right), L(x) R\left(x^{\theta}\right), R\left(x^{\theta}\right)\right)$ is an autotopism.
$\therefore\left(L(x), R\left(x^{\theta}\right), L(x) R\left(x^{\theta}\right)\right)$ is an autotopism.
$\therefore x y \cdot z x^{\theta}=(x \cdot y z) x^{\theta}$.
$\therefore M_{\rho \lambda}^{2} \Rightarrow M_{\rho \rho}^{1}$.
LEMMA 5. $M_{\lambda \rho}^{3} \Rightarrow M_{\lambda \rho}^{1}$ if θ is onto.
PROOF. $M_{\lambda \rho}^{3}: x^{\theta}(y \cdot x z)=\left(x y \cdot x^{\theta}\right) z$
Define x^{-1} by $x \cdot x^{-1}=1$. Let $y=x^{-1} . \therefore x^{\theta}\left(x^{-1} \cdot x z\right)=x^{\theta} z$.
$\therefore x^{-1} \cdot x z=z$. Let $z=x^{-1}$. Thus $x^{-1} \cdot x=1$.
\therefore It has the L.I.P.. Let $z=x^{-1} y^{-1}$.
Then $x^{\theta}=\left(x^{\theta} \cdot y x\right)\left(x^{-1} y^{-1}\right)$ using the L. I. P. and $x y \cdot x^{\theta}=x^{\theta} \cdot y x$.
\therefore It has the R.I.P.
Replacing $x z$ by z, we have $y z L\left(x^{\theta}\right)=y L(x) R\left(x^{\theta}\right) z L\left(x^{-1}\right)$.
$\therefore\left(L(x) R\left(x^{\theta}\right), L\left(x^{-1}\right), L\left(x^{\theta}\right)\right)$ is an autotopism.
$\therefore\left(L\left(x^{\theta}\right), R(x), L(x) R\left(x^{\theta}\right)\right)$ is an autotopism.
$\therefore x^{\theta} y \cdot z x=(x \cdot y z) x^{\theta}$.
$\therefore M_{\lambda \rho}^{3} \Rightarrow M_{\lambda \rho}^{1}$.
LEMMA 6. $M_{\rho \lambda}^{3} \Rightarrow M_{\rho \lambda}^{1}$ if θ is onto.
PROOF. $M_{\rho \lambda}^{3}: x\left(y \cdot x^{\theta} z\right)=\left(x^{\theta} y \cdot x\right) z=\left(x \cdot y x^{\theta}\right) z$.
Define ${ }^{-1}\left(x^{\theta}\right)$ by $^{-1}\left(x^{\theta}\right) \cdot x^{\theta}=1$. Let $y={ }^{-1}\left(x^{\theta}\right)$.
Then $x\left(^{-1}\left(x^{\theta}\right) \cdot x^{\theta} z\right)=x z . \therefore{ }^{-1}\left(x^{\theta}\right) \cdot x^{\theta} z=z$.
Let $z={ }^{-1}\left(x^{\theta}\right) . \therefore x^{\theta} \cdot{ }^{-1}\left(x^{\theta}\right)=1 . \therefore$ It has the L. I. P. .
Let $z=\left(x^{\theta}\right)^{-1} y^{-1}$. Then $x=\left(x \cdot y x^{\theta}\right)\left(x^{\theta} y^{-1}\right)$ using the L. I. P. .
\therefore It has the R.I.P..
Replacing $x^{\theta} \approx$ by z, we have $y z R(x)=y L\left(x^{\theta}\right) R(x) \cdot z L\left(x^{\theta}\right)^{-1}$.
$\therefore\left(L\left(x^{\theta}\right) R(x), L\left(x^{\theta}\right)^{-1}, R(x)\right)$ is an autotopism.
$\therefore\left(R(x), R\left(x^{\theta}\right), L\left(x^{\theta}\right) R(x)\right)$ is an autotopism.
$\therefore y x \cdot z x^{\theta}=x^{\theta}(y z) \cdot x$.
$\therefore M_{\rho \lambda}^{3} \Rightarrow M_{\rho \lambda}^{1}$.
THEOREM 2. Let G be a loop with the identity $M_{\lambda \rho}^{i}$ or $M_{\rho \lambda}^{i}(i=1,2,3)$. Then $x^{-1} \cdot x^{\theta} \in Z \quad \forall x \in G$.

PROOF. From lemma 2 to lemma 6, we see that $M_{\lambda \rho}^{i} \Rightarrow M_{\lambda \lambda}^{1}$ and $M_{\rho \lambda}^{i} \Rightarrow M_{\rho \rho}^{1}$. Therefore, $x^{-1} \cdot x^{\theta} \in N \forall x \in G$. By Moufang's theorem, [1, p. 117], $\left\langle x^{\theta}, x, y\right\rangle$ is a group $\forall y \in G$. By putting $z=1$ in $M_{\lambda \rho}^{i}$ or $M_{\rho \lambda}^{i}$, we get $x^{\theta} y x=x y x^{\theta}$. Replacing. y by $y x^{-1}$, we have $x^{-1} x^{\theta} \cdot y=y \cdot x^{-1} x^{\theta} . \therefore x^{-1} x^{\theta} \in Z$.

THEOREM 3. The identities $M_{\lambda \rho}^{i}$ and $M_{\rho \lambda}^{i}$ in a loop G are equivalent, $i=1,2,3$.
PROOF. By Theorem 2, $x^{-1} x^{\theta} \in Z \forall x \in G$. Then $x^{\theta}=x z_{x}, z_{x} \in Z$. Using this: and the equivalence of Moufang identities $M^{i}, \quad i=1,2,3$, we can complete the proof easily.

REFERENCES

[1] R.H. Bruck, A survey of binary system, Springer-Verlag, New York 1971.
[2] H. Pflugfelder A special class of Moufang loops, Proc. Amer. Math. Soc. 26 (1970). 583-586.
[3] Pl. Kannappan, On Moufang and extra loops, Publ. Math. Debrecen 23(1976), 103109.

Universiti Sains Malaysia
Minden, Pulau Pinang Malaysia

