Kyungpook Math. J.
Volume 26, Number 1
June, 1986

A RIESZ REPRESENTATION THEOREM IN 2-SEMI-INNER PRODUCT SPACES

By Salem A. Sahab and S. M. Khaleelulla

1. Introduction

With the aim of carrying over Hilbert space type arguments to the theory of Banach spaces, Lumer [7] introduced the concept of semi-inner product space with a more general axiom system than that of Hilbert space. Giles [6] imposed some restrictions on semi-inner product spaces and obtained the Riesz representation theorem for semi-inner product spaces. Motivated by the concepts of semi-inner product space due to Lumer [7] and 2-inner product space introduced in [1], Siddiqui and Rizvi [9] introduced the concept of 2-semi-inner product space. In an earlier paper [8], we studied the concepts of orthogonality and Gateax differentiability in 2 -semi-inner product spaces and gave a characterization of strict convexity in terms of 2 -semi-inner product. In the present paper we prove an analogue of the Riesz representation theorem in 2-semi-inner product space similar to the one proved by Giles [6] in semiinner product spaces.

2. Preliminaries

The following concept of 2-normed space was introduced in [4] :
Let E be a vector space with $\operatorname{dim}(E)>1$ and $\|\cdot, \cdot\|$ a real function on $E \times E$ which satisfies the following axioms:
(a) $\|x, y\|=0$ iff x and y are linearly independent;
(b) $\|x, y\|=\|y, x\|$;
(c) $\|\lambda x, y\|=|\lambda| \quad\|x, y\|, \quad \lambda \in \boldsymbol{R}$;
(d) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$.

We call $\|\cdot, \cdot\|$ a 2 -norm on E, and E, equipped with $\|\cdot, \cdot\|$, is called a $2-$ normed space written as $(E,\|\cdot, \cdot\|)$.

For non-zero vectors $x, y \in E$, we denote by $V(x, y)$ the subspace of E generated by x and y. A 2 -normed space $(E,\|\cdot, \cdot\|$) is said to be strictly convex if

$$
\|x+y, z\|=\|x, z\|+\|y, z\|, \quad\|x, z\|=1, \quad\|y, z\|=1
$$

and $z \notin V(x, y) \Longrightarrow x=y$ ([2]).
We recall the following definition from [9] :
Let E be a vector space with $\operatorname{dim}(E)>1$ and $[\cdot, \cdot]$ a real function on $E \times E$ $\times E$ which satisfies the following conditions:
$\left(\mathrm{S}_{1}\right)\left[x+x_{1}, y / z\right]=[x, y / z]+\left[x_{1}, y / z\right], x, x_{1}, y, z \in E$;
$\left(\mathrm{S}_{2}\right)[\lambda x, y / z]=\lambda[x, y / z], \lambda \in R, x, y, z \in E$;
$\left(\mathrm{S}_{3}\right)[x, y / z]>0$ if x and y are linearly independent.
(S_{4}) $|[x, y / z]| \leq[x, x / z]^{1 / 2}[y, y / z]^{1 / 2}$.
$[\cdot, \cdot / \cdot]$ is called a 2 -semi-inner on E. E, equipped with $[\cdot, \cdot / \cdot]$, is called a 2 -semi-inner product space (henceforth abbreviated to $2-$ s. i. p. space).

Every 2-normed space can be made into a $2-$ s. i. p. space and a 2 -s.i.p. space is a 2 -normed space with

$$
\|x, z\|=[x, \quad x / z]^{1 / 2}
$$

provided $[x, x / z]=[z, z / x]$ ([9]).
A sequence $\left\{x_{n}\right\}$ in a 2-normed space E is called a Cauchy sequence if there exist $y, z \in E$ such that y and z are linearly independent with

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{m}, y\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-x_{m}, z\right\|=0
$$

A sequence $\left\{x_{n}\right\}$ in E is called a convergent sequence if there is an $x \in E$ such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x, y\right\|=0
$$

for all $y \in E$. We then write $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
A 2-normed space E is said to be complete if every Cauchy sequence converges in E.

Let $c \in E$ and $[c]$ denote the vector space generated by c.
Let E be a 2-normed space. A map $f: E \times\{[c]\} \rightarrow \boldsymbol{R}$ is a linear 2-functional on $E \times\{[c]\}$ if for $a, b \in E$ the following holds:
(i) $f(a+b, c)=f(a, c)+f(b, c)$
(ii) $f(\lambda a, b)=\lambda f(a, b)$, where λ belongs to R.

Remark: Let f be a linear 2-functional defined on $E \times\{[z]\}$ where $[z]$ is the vector subspace generated by $z \in E$. Then f is continuous at (a, z) if given $\varepsilon>0$, there is a $\delta>0$ such that $|f(a, z)-f(b, z)|<\varepsilon$ whenever $\|a-b, z\|<\delta$.

As in [8], we consider here $2-\mathrm{s} . \mathrm{i} . \mathrm{p}$. spaces with the homogeneity property: $[x, \lambda y / z]=\lambda[x, y / z], \lambda \in \boldsymbol{R}$.

3. Main results

We start by extending the definition of uniform convexity to 2-normed spaces as follows:

DEFINITION 3.1. A 2 -normed space is uniformly convex if given $\varepsilon>0$ there exists $\eta>1$ such that $x, y \in E,\|x, z\|=\|y, z\|=1$ for all $z \in E-V(x, y)$, $\|x-y, \quad z\|>2 \varepsilon \Longrightarrow\|x+y, \quad z\| \leq 2 \eta$.

REMARK 3.2. The above definition is equivalent to the following:
Given $\varepsilon>\varepsilon^{\prime}>0$, there exists $\delta>0$ such that if $x, y \in E$ with $\|x, z\| \leq \frac{1}{\varepsilon^{\prime}},\|y, z\|$ $\leq \frac{1}{\varepsilon^{\prime}}$ for all $z \in E-V(x, y)$ and $\|\mid x, z\|-\|y, z\| \leq \varepsilon^{\prime}$ and $\|x-y, z\| \geq \varepsilon$, then

$$
\|x+y, z\| \leq\|x, z\|+\|y, z\|-\delta
$$

It can be shown that uniform convexity \Longrightarrow strict convexity.
LEMMA 3.3. Let N be a proper closed vector subspace in a 2-s.i.p. space E which is uniformly convex, and let $y \notin N$. Then there exists a unique nonzero vector $x_{0} \in N$ such that

$$
\begin{equation*}
\left\|y-x_{0}, z\right\|=\inf \{\|y-x, z\| ; x \in N\} \tag{*}
\end{equation*}
$$

for all $z \in E-V(y, N)$.
PROOF. Let $0<r=\inf \{\|y-x, z\|: x \in N\}$. Then there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in E such that

$$
\left.\left\|y-x_{n}, z\right\|=r_{n} \downarrow r \text { (increasing to } r\right)
$$

We assert that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is Cauchy. Suppose not, and let ρ be a positive real number such that $r_{n} \leq \rho$ for all n.

Let $\varepsilon>0$ be given and let $\varepsilon^{\prime}<\min \left\{\frac{1}{\rho}, \varepsilon\right\}$. Then there exists a subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$ such that for some positive integer J_{1} we have

$$
\left\|x_{n_{j}}-x_{n_{j+1}}, z\right\|>\varepsilon \text { for all } j>J_{1}
$$

for all $z \in E$ except possibly for one element $z_{0} \in E$.
Hence,
(1) $\left\|\left(y-x_{n_{j}}\right)-\left(y-x_{n_{j+1}}\right), z\right\|>\varepsilon$ for all $j>J_{1}$.

Next, choose $J_{2} \geq J_{1}$ such that
(2) $\left\|\left|y-x_{n_{j}}, z\|-\| y-x_{n_{j+1}}, z\| \|=\left|r_{n_{j}}-r_{n_{j+1}}\right| \leq \varepsilon^{\prime}\right.\right.$
for all $j \geq j_{2}$. We also have
(3) $\left\|y-x_{n_{j}}, z\right\|,\left\|y-x_{n_{j+1}}, z\right\| \leq \rho<\frac{1}{\varepsilon}$, for all j.

Combining (1), (2), (3) and the previous remark together, we conclude that there exists a real number $\delta>0$ such that

$$
\left\|\left(y-x_{n_{j}}\right)+\left(y-x_{n_{j+1}}\right), z\right\| \leq\left\|y-x_{n_{j}}, z\right\|+\left\|y-x_{n_{j+1}}, z\right\|-\delta
$$

or,
(4) $2\left\|y-\frac{1}{2}\left(x_{n_{j}}+x_{n_{j+1}}\right), z\right\| \leq r_{n_{j}}+r_{n_{j+1}}-\delta$ for all $j \geq J_{2}$.

But $r_{n} \downarrow r$ implies the existence of $J>J_{2}$ such that

$$
r_{n j}-r \leq \delta / 4 \text { for all } j>J .
$$

Hence (4) becomes

$$
\left\|y-\frac{1}{2}\left(x_{n_{j}}+x_{n_{j+1}}\right), \quad z\right\| \leq \frac{1}{2}\left(r+\frac{\delta}{4}+r+\frac{\delta}{4}-\delta\right)<r
$$

Contradiction! since $\frac{1}{2}\left(x_{n_{j}}+x_{n_{j+1}}\right) \in N$.
Therefore $\left\{x_{n}\right\}_{n=1}^{\infty}$ must te Cauchy and since N is closed and consequently complete, then there exists a unique $x_{0} \in N$ such that $x_{n} \rightarrow x_{0}$.

Next, we show uniqueness of x_{0} with respect to (*). So suppose x_{0} and x_{0}^{*} both satisfy (*) and $\left\|x_{0}-x_{0}^{*}, z\right\|>0$ for all $z \in E-V\left(x_{0}-x_{0}^{*}\right)$. Then

$$
\frac{\left\|y-x_{0}, z\right\|}{r}=\frac{\left\|y-x_{0}^{*}, z\right\|}{r}=1
$$

and,

$$
\left\|\left(\frac{\left(y-x_{0}\right)}{r}-\frac{\left(y-x_{0}^{*}\right)}{r}\right), z\right\|=\frac{\left\|x_{0}-x_{0^{\prime},} z\right\|}{r} \geq 2 \varepsilon^{*}>0
$$

from some $\varepsilon^{*}>0$. Then by definition (4.1), there exists $\eta<1$ such that

$$
\frac{1}{r}\left\|\left(y-x_{0}\right)+\left(y-x_{0}^{*}\right), \quad z\right\| \leq 2 \eta<2
$$

or,

$$
\left\|y-\frac{1}{2}\left(x_{0}+x_{0}^{*}\right), \quad z\right\|<r
$$

but $\frac{1}{2}\left(x_{0}+x^{*}{ }_{0}\right) \in N$. Contradiction to (*)! Therefore x must be unique.
LEMMA 3.4. Let E be a continuous 2-s.i.p. space which is uniformly convex and complete in its 2 -norm and let N be a proper closed vector subspace of E. Then there is a vector z_{0} which is normal to N.

PROOF. Let $y \notin N$. Then by the last lemma, there exists a unique nonzero vector $x_{0} \in N$ such that

$$
\|y-x, z\|=\inf \{\|y-x, z\|: x \in N\} .
$$

Put $z_{0}=y-x_{0}$, then

$$
\begin{aligned}
\left\|z_{0}, z\right\| & =\left\|y-x_{0}, z\right\| \\
& \leq\|y-x, z\| \quad \text { for all } x \in N \\
& =\left\|z_{0}+x_{0}-x, z\right\| \\
& =\left\|z_{0}+t, z\right\| \quad \text { for all } t \in N
\end{aligned}
$$

which implies that z_{0} is normal to $N[8,3.3]$.
THEOREM 4.4. In a continuous 2-s.i.p. space E which is uniformly convex and complete in its 2-norm, to every continuous linear 2-functional f defined on $E \times$ $\{[z]\}, z \in E$, there exists a unique vector $y \in E$ such that

$$
f(x, z)=[x, y / z] \text { for all } x \in E .
$$

PROOF. If $f(x, z)=0$ for all $x \in E$, then let $y=0$.
If $f(x, z) \neq 0$ for some $x \in E$, then $N=\{x: f(x, z)=0\}$ is a proper closed vector subspace of E.

Hence by last lemma, there exists a nonzero vector $y_{0} \in E$ such that y_{0} is normal to N.

When $x \in N$, we have

$$
f(x, z)=[x, y / z]=0 \text { for } y=\alpha y_{0}, \quad \alpha \in \boldsymbol{R} .
$$

When $x=y_{0}$, we have

$$
f(x, z)=[x, y / z]=f\left(y_{0}, z\right)
$$

for the choice

$$
y=\left\{\frac{f\left(y_{0}, z\right)}{\left\|y_{0}, z\right\|^{2}}\right\} y_{0}, z \notin V\left(y_{0}\right)
$$

Now since each $x \in E$ can be represented in the form $x=t+\lambda y_{0}$ where $t \in N$ and y_{0} is normal to N and $\lambda=f(x, z) / f\left(y_{0}, z\right)$, we have for all $x \in E$

$$
\begin{aligned}
f(x, z) & =f\left(t+\lambda y_{0}, z\right)=f(t, z)+\lambda f\left(y_{0}, z\right) \\
& =[t, y / z]+\lambda\left[y_{0}, y / z\right]=\left[t+\lambda y_{0}, y / z\right]=[x, y / z] .
\end{aligned}
$$

Uniqueness: Suppose there exist vectors $y, y^{\prime} \in E, y \neq y^{\prime}$ such that

$$
f(x, z)=[x, y / z]=\left[x, y^{\prime} / z\right] \text { for all } x \in E .
$$

Then

$$
[y, y / z]=\left[y, y^{\prime} / z\right] \leq\|y, z\|\left\|y^{\prime}, z\right\|
$$

or

$$
\|y, z\|^{2} \leq\|y, z\|\left\|y^{\prime}, z\right\|
$$

$$
\begin{equation*}
\|y, z\| \leq\left\|y^{\prime}, z\right\| \tag{1}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
\left\|y^{\prime}, z\right\| \leq\|y, z\| \tag{2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\|y^{\prime}, z\right\|=\|y, z\| \tag{3}
\end{equation*}
$$

From $\|y, z\|^{2}=\left[y, y^{\prime} / z\right]$, it follows that

$$
\|y, z\|\left\|y^{\prime}, z\right\|=\left[y, y^{\prime} / z\right] .
$$

Hence, by [8], 5.1, we have $y=y^{\prime}$.

Faculty of Science
King Abdulaziz University Jeddah, Saudi Arabia

REFERENCES

[1] Diminnie, C., Gahler, S. and White, A., 2-inner product spaces I, DemonstratioMath. 6(1973), 525-536.
[2] Diminnie, C., Gahler, S. and White, A., Strictly convex linear 2-normed spaces, Math. Nachr. 59(1974), 319-324.
[3] Gahlep., S., 2-metrische Raume und ihre topologische struktur, Math. Nachr. 26(1963/ 64), 115-148.
[4] Gahler, S., Lineare 2-normierte Raume, Math. Nachr. 28(1965), 1-45.
[5] Gahler, S., Uber 2-Banach Raume, Math. Nachr. 42(1969), 335-347.
[6] Giles, J. R., Classes of semi-inner product spaces, Trans. Amer. Math. Soc. 129(1967), 436-446.
[7] Lumer, G., Semi-inner product spaces, Trans. Amer, Math. Soc. 100(1961), 29-43.
[8] Salem A. Sahab and Khaleelulla, S. M., Some results in 2-semi-inner product spaces, To appear in Tamkang J. Math.
[9] Siddiqui, A. H. and Rizvi, S. M., 2-Semi-inner product spaces I, Math. Japonicae, 21 No. 4, (1976), 391-397.
[10] White, A.G., 2-Banach spaces, Math Nachr. 42(1969), 43-60.

