A REMARK ON A PROJECTIVE COVER OF A MODULE

Y.S. PARK

In this short note, we point an error which appeared in pp. 74-75 of Rotman's book, an introduction to homological algebra. He characterized there injective envelopes as follows: A monomorphism $i: M \rightarrow E$, where E is injective, is an injective envelope if and only if a monic dashed arrow always exists below

whenever j is an imbedding of M into an injective D.

Dualizing the notion of an injective envelope, he defined a *projective cover* of a module M iff it is an epimorphism $\varepsilon: P \rightarrow M$, where P is projective, so that an epic dashed arrow always exists below

whenever ψ is an epimorphism from a projective Q.

He also characterized an epimorphism $\varepsilon: P \rightarrow M$, where P is projective, is a projective cover if and only if Ker ε is supperfluous. But, we recalled that a projective cover of a module M is an epimorphism $\varepsilon: P \rightarrow M$, where P is projective, such that Ker ε is superfluous, in any standard books in theory of rings and modules.

100 Y.S. Park

In this short remark, we show that the above characterization of a projective cover is not always true in the following proposition.

PROPOSITION. An epimorphism $\varepsilon: P \rightarrow M$, where P is projective, is a projective cover (in sense of Rotmann) if Ker ε is superfluous. But its converse is not always true.

Proof. Consider given a diagram

where ϕ is any epimorphism from a projective Q.

Since Q is projective, there exists an homomorphism ϕ such that $\varepsilon\phi=\psi$. Since $\ker \varepsilon + \operatorname{Im} \phi = P$ and $\ker \varepsilon$ is superfluous, it follows that ϕ is epic. To see that its converse is not always true, let $\varepsilon: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ be the canonical epimorphism as \mathbb{Z} -modules. Then it is known that $\ker \varepsilon$ is not superfluous.

Consider given a diagram

where Q is an Z-projective and ψ is any epimorphism from

Q to $\mathbb{Z}/2\mathbb{Z}$. Since Q is \mathbb{Z} -free, we may assume that $Q=\coprod \mathbb{Z}_a$, where $\mathbb{Z}_a=\mathbb{Z}$ for each α . Let $u_\alpha:\mathbb{Z}_a\to\coprod \mathbb{Z}_a$ be the α th injection. By assumption ϕ is an epimorphism, and so there exists α such that $\psi u_\alpha=\varepsilon$.

For each α define $\phi_{\alpha}: \mathbb{Z}_{\alpha} \rightarrow \mathbb{Z}$ as follows:

$$\phi_{\alpha} = \begin{cases} 1 & \text{if } \psi u_{\alpha} = \varepsilon \\ 0 & \text{if } \psi u_{\alpha} = 0, \end{cases}$$

where 1 is the identity map on Z and 0 is the trivial homomorphism on Z.

Thus $\epsilon \phi_{\alpha} = \psi u_{\alpha}$ for all α . Let $\phi = \coprod \phi_{\alpha}$ be the coproduct map of the family $\{\phi_{\alpha}\}$. Then it is easy to show that ϕ is an epimorphism by using the existence of α such that $\psi u_{\alpha} = \varepsilon$. Moreover, we have

$$\psi u_{\alpha} = \varepsilon \phi_{\alpha} = \varepsilon \phi u_{\alpha}$$

for all α . Hence we have $\phi = \varepsilon \phi$.

Reference

1. J.J. Rotman, An introduction to homological algebra, Academic Press, New York, 1979.

Kyungpook National University Taegu, Korea