SOME ACTIONS ON THE HYPERFINITE II -FACTOR

TAE-HOON PARK

1. Introduction

In [2], Choda proved that there are two kinds of ergodic actions of $SL(n, \mathbb{Z})$ $(n \ge 3)$ on the hyperfinite I_1 -factor R, one of which constructs full I_1 -factors with property T and the other gives full I_1 -factors without property T. In this paper we shall study some actions of discrete countably infinite groups on R and prove the same result for $Sp(n, \mathbb{Z})$ as the result in [2] for $SL(n, \mathbb{Z})$.

2. Preliminaries and Notations

For a fixed positive integer n, define the symplectic form $B: \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ by

$$B(a,b) = \sum_{i=1}^{n} a_i b_{n+i} - \sum_{i=1}^{n} a_{n+i} b_i,$$

where R denotes the set of all real numbers. The symplectic group Sp(n, R) is the following subgroup of invertible matrices:

$$\{T \in M_{2n}(\mathbf{R}) : B(a,b) = B(Ta,Tb) \text{ for all } a,b \in \mathbf{R}^{2n}\}.$$

Denote by K the semidirect product $Sp(n, \mathbf{R}) \times {}_{s}\mathbf{R}^{2n}$, where multiplication is defined by

$$(S, a) (T, b) = (ST, T^{-1}(a) + b) (S, T \in Sp(n, \mathbf{R}), a, b \in \mathbf{R}^{2n}).$$

Let s be an irrational number in $[0, \frac{1}{2}]$ mod. 2π . Put

$$\mu_s((S, a), (T, b)) = \exp(is\pi B(T^{-1}a, b)),$$

for S, $T \subseteq Sp(n, \mathbb{R})$ and $a, b \subseteq \mathbb{R}^{2n}$. Then μ_s is a normalized 2-cocycle of $K \times K$ to the torus T (See [3]).

Let's consider the semidirect product $Sp(n, \mathbb{Z}) \times_s \mathbb{Z}^{2n}$, which is a subgroup of K. Define the left μ_s -regular representation λ^s by

$$(\lambda^s(g)\xi)(h) = \mu_s(h^{-1}, g)\xi(g^{-1}h)$$

for $g, h \in Sp(n, \mathbb{Z}) \times_s \mathbb{Z}^{2n}$ and $\xi \in l^2(Sp(n, \mathbb{Z}) \times_s \mathbb{Z}^{2n})$. Then λ^s is a unitary representation of $Sp(n, \mathbb{Z}) \times \mathbb{Z}^{2n}$ with the cocycle μ_s , that is,

$$\lambda^{s}(g)\lambda^{s}(h) = \mu_{s}(g,h)\lambda^{s}(gh)$$

for $g, h \in Sp(n, \mathbb{Z}) \times_s \mathbb{Z}^{2n}$.

The von Neumann algebra R_s generated by $\lambda^s(1, \mathbb{Z}^{2n})$ is a hyperfinite I_1 -factor ([3]). Define an action α^s of $Sp(n, \mathbb{Z})$ on the hyperfinite I_1 -factor R_s by

$$\alpha^{s}(T)(x) = \lambda^{s}(T,0)x\lambda^{s}(T,0)^{*}$$

for all $T \in Sp(n, \mathbb{Z})$ and all $x \in \lambda^s(Sp(n, \mathbb{Z}) \times \mathbb{Z}^{2n})$.

A countable group G with center Z(G) is said to have property F if every inner invariant mean m on G satisfies $m(\chi(Z(G)))=1$. For $n\geq 2$, the groups $SL(n, \mathbb{Z})$, $GL(n, \mathbb{Z})$, $Sp(n, \mathbb{Z})$ and the free group F_n on n generators have property F ([2, 3]). Let A be a finite von Neumann algebra with a faithful normal normalized trace τ , G a countable discrete group with property F and α a strongly ergodic action of G on (A, τ) . If Z(G) is finite set and α is faithful on Z(G), then the crossed product $R(G, A, \alpha)$ is a full \mathbb{I}_1 -factor ([4]).

3. Main Result

If there exists an injection j of a countably infinite group G of matrices with integer entries into $Sp(n, \mathbb{Z})$, then we get an action of G on R_s by the restriction of α^s on j(G). Let G be one of the groups $Sp(n, \mathbb{Z})$, $SL(n, \mathbb{Z})$, $GL(n, \mathbb{Z})$ and the free group F_2 which is represented by a subgroup of $GL(2, \mathbb{Z})$. We shall denote $\alpha^s \circ j$ of G on R_s by the same notation α^s . Then the crossed product $R(G, R_s, \alpha_s)$ is a full \mathbb{I}_1 -factor since the action α^s is strongly ergodic.

A group G is said to have property T of Kazhdan iff the trivial representation is an isolated point in the set of equivalence classes of irreducible unitary representations of G. Let Γ be a discrete countable group of matrices with integer entries such that for some n there is an injection j of Γ into $Sp(n, \mathbb{Z})$ and semidirect product $j(\Gamma) \times_{s} \mathbb{Z}^{2n}$ has

property T. Then the crossed product $R(\Gamma, R_s, \alpha_s)$ is a \prod_{1} -factor with property T since the crossed product of a \prod_{1} -factor by a countable group of outer automorphisms is also \prod_{1} -factor.

Thus we have the following:

Proof. Let's consider the action α^s of Γ on R, discussed above. Then $R(\Gamma, R_s, \alpha^s)$ is a $\|\cdot\|_1$ -factor with property T. Let β be the Bernoulli shift action of Γ . Then the inner automorphism group is not open ([2]). If a $\|\cdot\|_1$ -factor has property T, then the inner automorphism group is open. Hence $R(\Gamma, R, \beta)$ does not have property T.

LEMMA 2 ([3]). The following groups have property T;

$$Sp(n, \mathbf{R}) \times_{s} \mathbf{R}^{2n}$$
, $Sp(n, \mathbf{Z}) \times_{s} \mathbf{Z}^{2n}$ for $n \ge 2$

and

$$j(SL(n, \mathbf{R})) \times_{s} \mathbf{R}^{2n}$$
, $j(SL(n, \mathbf{Z})) \times_{s} \mathbf{Z}^{2n}$ for $n \ge 3$.

COROLLARY 3. Let G be one of the groups $Sp(n, \mathbb{Z})$ ($n \ge 2$), $SL(n, \mathbb{Z})$ ($n \ge 3$). Then there are two kinds of strongly ergodic outer actions α and β of G on R such that $R(G, R, \alpha)$ is a full $\| \cdot \|_1$ -factor with property T and that $R(G, R, \beta)$ is a full $\| \cdot \|_1$ -factor without property T.

Proof. Let α^s be the action of G on R_s , then $R(G, R_s, \alpha^s)$ is a full $\|\cdot\|_{1}$ -factor. The Bernoulli shift action β is strongly ergodic and G has property F with finite center. Hence $R(G, R, \beta)$ is a full $\|\cdot\|_{1}$ -factor without property T_s .

References

- 1. M. Choda: A condition to construct a full 1 1-factor with an application to approximate normalcy, Math. Japon., 28 (1983), 383-398.
- M. Choda: A continuum of nonconjugate property T actions of SL(n, Z) on the hyperfinite I ₁-factor, Math. Japon., 30 (1985), 133-150.

- 3. M. Choda: Outer actions of groups with property T on the hyperfinite 1 ₁-factor, Preprint.
- 4. M. Choda: Full In-factors and group actions, Preprint.
- 5. D.A. Kazhdan: Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl., 1 (1967), 63-65.

Duksung Women's College Seoul, Korea