
~!l:l!l:l~_ Korean_ Math. Soc. 1 (1986)

A TUBE FORMULA IN PRODUCT RIEMANNIAN MANIFOLDS

SUNG YUN LEE

In 1973 Gray DJ proved a product formula for a geodesic ball in
product Riemannian manifolds. We generalize his result in this article.
In fact we derive a product formula for a tube in product Riemannian
manifolds (Theorem 4).

Let M be a smooth Riemannian manifold of dimension n with metric
tensor <.). Denote by ~(M) the smooth vector fields on M, and let 17
and R be the Riemannian connection and curvature tensor of M. Here
17 and R are given by

2(17xY• Z>=X(~Z>+Y(X.Z>-Z(X. Y)-(X. [Y.ZJ)
-(Y. [X.ZJ)+<Z. [X. YJ>.

RxyZ=17 eX.Y] - [17x.17yJZ. for X. Y. ZE~(M).

Let P be a p-dimensional embedded submanifold with compact closure
in M. Briefly we put PCM. We assume that P and M are analytic
Riemannian manifolds. We now give a definition of fermi coordinates
which describes the geometry of M in a neighborhood of P. We denote
by IJ the normal bundle of P in M. The exponential map exp" of the
normal bundle maps a neighborhood of the zero section of IJ into M. Let
PEP and let EHh .... E.. be orthonormal sections of IJ defined near P.
Let (,10 .... Yp) be a coordinate system in a neighborhood V of p in P.

DEFINITION. The Fermi coordinates (Xh .. ·• x ..) of P at p (relative to
(Yh .... yp) and EH10 ...• E.,) are given by

Let (JJ be the volume element on M and let (xh .. •• x ..) be a system of
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Fermi coordinates of PCM at p such that w(_O_, "', _0_»0. We
OXl ox..

o
PUt --=X" l~k~n, andox" '

The tube T(P, r) of radius r about P in M is the set

T(P, r) = {exp,(u) IPEP, uEP/, 11 u 11 ~r}.

We also put the tubular hypersurface

P r = {mET(P, r) Id(m, P) =r}.

Here we assume that r is less than or equal to the distance of P to its
nearest focal point so that for mET(P, r) - p. there exists a unique
geodesic from m to P meeting P orthogonally. We set

VpM(r) =n-dimensional volume of T(P, r),
ApM(r) = (n-l)-dimensionatvolume of Pr.

The following basic lemmas are well-known.

LEMMA 1. We have

LEMMA 2. We have

ApM (r) = JpJs.-p·, (.)£1)1..... (exp.u)dudP ,

where 8"-r1 (r) is the (n-p-l)-dimensional sphere of radius r in Pp\
du is the corresponding volume element, and dP is the volume element of P.

For proofs see [2J.
Let PcM, QCN and put dimP=p, dimQ=q, dimM=m, dimN=

n. Then the Riemannian product PxQ is a (p+q)-dimensional submani­
fold of the Riemannian product manifold M X N. Let Wl and W2 be the
volume elements of M and N respectively.

Then £l)1!\W2 is the volume element of Mx N. Let (X1> ''', x .., Y1> "',
Y..) be a Fermi coordinates of PxQCMxN at (p, q)EPXQ such that
(Xh "', x",) is a system of Fermi coordinates of PcM at PEP and
(Y1> "', Y..) is a system of Fermi coordinates of QCN at qEQ. We put
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_a_=XA l~A~m, -af]=YB, l~B~n, and write
aXA' YB

lI.ll(Xb ·.. ,X",)=(lI.ll)1"·"'; lI.lz(Yh "', Y..) = (lI.lZ) 1''''';
(lI.l1!\lI.lZ)(Xh ·.. ,X"" Yh "', Y..) = (lI.ll!\lI.lZ) 1"'''',1''''',

Then we have

LEMMA 3.
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(lI.ll!\lI.lZ) 1· .. ",,1· ....= (lI.ll) 1·"",(lI.lZ) 1'''",

Gray and Vanhecke [3J gave an effective method determining the
power series expansion in Fermi coordinates of an analytic covariant
tensor field. We now define ApM(r) by Lemma 2

ApM(r) =J J lI.ll..... (exp. u)dudP
P s,-P·'(rl

for all values of r provided we use the power series expansion in Fermi
coordinates for lI.ll'''''' If r is less than or equal to its nearest focal point
then ApM(r) is the (n-I)-dimensional volume of Pr. We also define

ApM (s) = J~e-·"t"ApM (t)dt.

The power series for e-·"t"ApM (t) can be integrated term by term. Thus
ApM(s) can always be formally defined.

THEOREM 4. Let PcM, QcN so that P X QCMx N. Then we have

ApXQMXN(S) =ApM (S)AQN (s).

Proof. We first recall the following.

LEMMA 5. Let (XI. "', x,,) be a system of Fermi coordinates for PcM.
We put

..
r 2= E X;2.

i=P+l

Then rem) =d(m, P).
For a proof see [2J.
Next we choose a system of Fermi coordinates (XI. "', x"" Yb ''', y,,)
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.. ..
of PxQcMxN at (p, q)EPXQ. We write r12= ~ xl, rl= ~ Yl,

i=;+1 j=q+l

r2=r1
2+rl. Let 11 be the normal bundle of PxQ in MxN and III (resp.

112) be the normal bundle of P (resp. Q) in M (resp. N).
Then we have from Lemma 3

«(1)11\(1)2) l .....,l ..... (exp.u) = «(1)1) 1'"",(exP.IUl) (m2) l·· ... (exp••uz).
where uE(PXQ).J.. can be written U=(U1oU2) with UIEP/. U2EQ/.

Therefore we have

ApXQMXN (s) = J~e-s2 ,'ApXQMXN (r) dr

=J"'J J e-s',2 (ml!\w2)! ....... !..... (exp.u)dud(PxQ)dr
o PxQ S-+·-I-.-l(,)

=J'" ... J'" J e-S
'
r

I
2
(ml)l ......(exp.lul)dPdxHl···dx".

-OQ -co P

• J'" ... J'" J e-·2r2·(m2)!••. n(exP.2u2)dQdYq+!· ..dYn
-co -co Q

= J:e-s2r.2ApM (r l ) drl J~e-s'r2'AQN(r2)dr2

=ApM(S)AQN(S).

REMARK. If P and Q are points then the above theorem reduces to a
product formula for a geodesic ball.
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