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A TUBE FORMULA IN PRODUCT RIEMANNIAN MANIFOLDS

Sune Yun Lee

In 1973 Gray [1] proved a product formula for a geodesic ball in
product Riemannian manifolds. We generalize his result in this article.
In fact we derive a product formula for a tube in product Riemannian
manifolds (Theorem 4).

Let M be a smooth Riemannian manifold of dimension » with metric
tensor ¢, ). Denote by (M) the smooth vector ficlds on M, and let p
and R be the Riemannian connection and curvature tensor of M, Here
7 and R are given by

2rxY, Z)=XY,Z)+Y(X,Z)—-ZX, Y)—<X, [Y,Z])
=¥, [X,ZD+4Z, [X, YD,
RxyZ=V x,v:—[Vx, Pr1Z, for X, Y, Zex(M).

Let P be a p-dimensional embedded submanifold with compact closure
in M, Briefly we put PCM., We assume that P and M are analytic
Riemannian manifolds. We now give a definition of fermi coordinates
which describes the geometry of M in a neighborhood of P. We denote
by v the normal bundle of P in M, The exponential map exp, of the
normal bundle maps a neighborhood of the zero section of v into M, Let
p<P and let E,,,, -+, E, be orthonormal sections of v defined near p,
Let (v, +-*,%;) be a coordinate system in a neighborhood V of p in P,

DEFINITION. The Fermi coordinates (z,, -+, x,) of P at p (relative to
(yh AR yj’) alld Ep+1, "ty E,,) are given by

za(exp,( 33 tE;(@))) =2:(@), a=1, -,

j=pF1
-Ti(eXP-(j:L;:thjEj(Q))) =4, i=p+1, "", n, for q=V.

Let w be the volume element on M and let (z,, ---, z,) be a system of

31—



32 Sung Yun Lee

Fermi coordinates of PCM at p such that w(——a—g——, TN -—a-%-)>0- We
1 n

put -0 =X, 1<ksn, and
o(Xy, -, X)) =0eun .
The tube T(P,r) of radius r about P in M is the set
T(P,r)={exp,(u) | p=P, uc=P,", |lull <r}.
We also put the tubular hypersurface

P.={m=T(P,r)|d(m, P)=r},

Here we assume that r is less than or equal to the distance of P to its
nearest focal point so that for meT(P,r)—P, there exists a unique
geodesic from m to P meeting P orthogonally. We set

V¥ (r) =n-dimensional volume of T(P,r),
Ap¥(r) = (n—1)-dimensional _volume of P,.
The following basic lemmas are well-known.

LEMMA 1. We have

f ;Ap” (P)dr=V¥(r).

LEMMA 2. We have

AM(r) = f , f ot ro,..., (ExP)dudP

where S™*(r) is the (n—p—1)-dimensional sphere of radius r in P,
du is the corresponding volume element, and dP is the volume element of P,

For proofs see [2].

Let PCM, QCN and put dim P=p, dimQ=q, dim M=m, dim N=
n. Then the Riemannian product PxQ is a (p-+g)-dimensional submani-
fold of the Riemannian product manifold MxN. Let o, and w, be the
volume elements of M and N respectively.

Then w,Aw, is the volume element of Mx N, Let (2, -, Zu, ¥, "
¥,) be a Fermi coordinates of PXQC MxN at (p,q)=PxQ such that
(zy, -, zx) is a system of Fermi coordinates of PCM at pP and
(¥4, ==, ¥u) is a system of Fermi coordinates of QCN at ¢=Q. We put
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d

=X, 1=A=Zm,
Ba:A

=Yp, 1=ZB=n, and write

oye

o (Xy, -, X)) = (‘01) Loeemd (Y, -+, Y,)= (wz)x---ni
(‘01/\02) (Xla ey Xy Y, A Y,,) = ((01/\“)2) Leosmyleeens

Then we have
LEMMA 3.
(wl/\wl)l“'m,l'"n: (wl)l'”m(wz) 1oeene

Gray and Vanhecke [3] gave an effective method determining the
power series expansion in Fermi coordinates of an analytic covariant
tensor field. We now define A (r) by Lemma 2

AM(r) =fpfs’_p_l(r)w1...,.(exp, u)dudP

for all values of r provided we use the power series expansion in Fermi
coordinates for w;...,. If r is less than or equal to its nearest focal point
then ApM(r) is the (n—1)-dimensional volume of P,, We also define

A (s) = f e AM () dt,
0
The power series for e~*'*" Az () can be integrated term by term. Thus
Ap¥(s) can always be formally defined.
THEOREM 4, Let PCM, QCN so that PXQCMXN, Then we have
Ap N (s) =AM (s) A (5).
Proof. We first recall the following.
LEMMA 5. Let (x,, -, z,) be a system of Fermi coordinates for PCCM,

We put

7= LV",_, .Z‘gz,
i=p+1
Then r(m) =d(m, P).
For a proof see [2].
Next we choose a system of Fermi coordinates (zy, -**, Zm 1, ***s ¥a)
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of PXQCMXN at (p,q)EPXQ. We write 7= %xxiz, rzz=_§;Hy,-2,
= =g

r’=r.2+r,2 Let v be the normal bundle of PxQ in MXN and v, (resp.
v2) be the normal bundle of P (resp. Q) in M (resp. N).
Then we have from Lemma 3

(@01/\®2) 1+, 10+ (€XP) = () 1. m(€XD, 2y) (@2) 5. n (€XDy,2)
where u=(PX Q)+ can be written u= (u,, u,) with #,&P,", u,=Q"

Therefore we have
EPxQMXN(S) =f:e"32"ApxaMXN(r)df
=fo j~l’x£)fsmh-p-q-l(r)‘rI ' (0)1/\0)2)1...m,1,,,"(exp,,u)dud(PXQ)df
=f_u---f_wfpe”s’rl’ (wl)1"-m(eva1“l)de‘rP+l'"dx"’
. f—m...f—-wfae—s’rzﬂ (wz)1...n(eXPvzuz)deyq+l'"dy"
=f m’e"”"ﬁx‘h’"(7"1)‘1"1 f we_s,"’AGN(rz)dT 2
0 - 0
=AM () A (5).

REMARK. If P and Q are points then the above theorem reduces to a
product formula for a geodesic ball.
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