ON TOPOLOGICAL STRUCTURE OF A CERTAIN SUBMANIFOLD IN R*+2

YONG BAI BAIK AND YANG JAE SHIN

1. Introduction

This is a kind of reports which is devoted to classifying certain submanifold of codimension 2 immersed in a Euclidean space R^{n+2} . As is well known, if for a compact connected hypersurface M in a Euclidean space R^{n+1} the Gauss curvature never vanishes on M, then the second fundamental form of M is definite everywhere on M and moreover M is homeomorphic to a sphere.

On the other hand, since a Riemannian submanifold of positive curvature has the Gauss curvature where never vanishes, it seems to be interesting to investigate that for an n-dimensional compact Riemannian manifold of positive curvature immersed isometrically in R^{n+2} whether the property stated above in the hypersurface is valid or not. This problem was treated by Bishop [2], Gallot-Meyer [6], Meyer [12] and Weinstein [15]. It has been almost completely classified by Moore [14]. Moore proved that if M is of positive curvature, then M is a homotopy sphere. This result is generalized by Baldin and Mercuri [1] in the case of non-negative curvature, which is stated as follows: If M is of non-negative curvature, then M is either a homotopy sphere or diffeomorphic to a product of two spheres.

The purpose of this paper is to verify the particular case of the result due to Baldin and Mercuri from a different point of view. In the last section we prove the following:

THEOREM. Let M be an $n(\geq 3)$ -dimensional compact connected and oriented Riemannian manifold of non-negative curvature. If there is a point x on M at which all sectional curvatures are positive and if M is

^{*}This research was supported by Korea Science and Engineering Foundation 84-85.

isometrically immersed in a Euclidean space \mathbb{R}^{n+2} , then M is an integral homological sphere.

2. Preliminaries

Let V and W be real vector spaces of finite dimensions n and p respectively, and σ be a symmetric bilinear map of $V \times V$ into W. Suppose $n \ge 2$ and W has an inner product <, >. A vector u in $V_0 = V - \{0\}$ is said to be asymptotic if $\sigma(u, u) = 0$ holds. Define the associated curvature form $R_{\sigma}: \Lambda^2 V \times \Lambda^2 V$ to R by

(2. 1)
$$R_{\sigma}(u \wedge v, w \wedge z) = \langle \sigma(u, w), \sigma(v, z) \rangle - \langle \sigma(u, z), \sigma(v, w) \rangle$$

for any vectors u, v, w and z in V. The map R_{σ} is again symmetric and hence the eigenvalues of R_{σ} are real. R_{σ} is said to be positive definite or positive semi-definite according as all eigenvalues of R_{σ} are positive or non-negative, respectively. A real valued map K_{σ} is next defined by

$$(2.2) K_{\sigma}(u,v) = R_{\sigma}(u \wedge v, u \wedge v)$$

whenever $u \wedge v \neq 0$. The map K_{σ} is said to be positive definite or positive semi-definite according as $K_{\sigma}(u, v)$ is positive or non-negative for linearly independent vectors u and v in V_0 , respectively. Consider the following conditions for the linear map:

- (a) R_{σ} is positive semi-definite.
- (b) K_{σ} is positive semi-definite.
- (c) There exists an orthonormal basis $\{\xi_{n+1}, \dots, \xi_{n+p}\}$ for W in such a way that the real valued function h_{α} on $V \times V$ defined by $h_{\alpha}(u, v) = \langle \sigma(u, v), \xi_{\alpha} \rangle$ is non-negative for any index $\alpha = n+1, \dots, n+p$.

LEMMA 2.1. (1) (a) \rightarrow (b). (2) (c) \rightarrow (a). (3) In particular, if p=2, the conditions above are all equivalent.

Proof. The assertion (1) is trivial. Suppose that the condition (c) holds. By making use of the function h_{α} for an orthonormal basis $\{\xi_{\alpha}\}$, an image of σ is given by $\sigma(u, v) = \sum_{\alpha} h_{\alpha}(u, v) \xi_{\alpha}$. Then we have

$$R_{\sigma}(u \wedge v, w \wedge z) = \sum \{h_{\alpha}(u, w)h_{\alpha}(v, z) - h_{\alpha}(u, z)h_{\alpha}(v, w)\}.$$

For a fixed index α , real valued function R_{α} is given by

$$(2.3) R_{\alpha}(u \wedge v, w \wedge z) = h_{\alpha}(u, w) h_{\alpha}(v, z) - h_{\alpha}(u, z) h_{\alpha}(v, w),$$

and we have

$$(2.4) R_{\sigma} = \sum_{\alpha} R_{\alpha}$$

In order to prove that R_{σ} is positive semi-definite, it suffices to show that all the map R_{α} are positive semi-definite. For fixed index α , let $\{u_1, \dots, u_n\}$ be an orthonormal basis for V which diagonalizes the function h_{α} ; namely, $h_{\alpha}(u_i, u_j) = \lambda_i \delta_{ij}$. Here and in the sequel, indices i and j run over the range $\{1, 2, \dots, n\}$ and an index α run over the range $\{n+1, \dots, n+p\}$, unless otherwise stated. Then $\lambda_i \geq 0$ for all indices i, because h_{α} is positive semi-definite. Since the inner product $\langle \cdot, \cdot \rangle$ of $\Lambda^2 V$ is by definition

$$\langle u \wedge v, w \wedge z \rangle = \langle u, w \rangle \langle v, z \rangle - \langle u, z \rangle \langle v, w \rangle$$

then the definition (2.3) of the function R_{α} implies

$$R_{\alpha}(u_i \wedge u_j, u_k \wedge u_l) = \lambda_i \lambda_j \langle u_i \wedge u_j, u_k \wedge u_l \rangle.$$

It means that $\{u_i \wedge u_j : i < j\}$ forms an orthonormal basis for $\Lambda^2 V$ which diagonalizes R_{α} with eigenvalues $\lambda_i \lambda_j$ (≥ 0). So R_{α} is positive semi-definite.

In the case where p=2, it only remains to prove that the condition (b) implies the condition (c). Suppose that the map K_{σ} is positive semi-definite. Then for all pairs (u, v) of linearly independent vectors. we have

$$(2,5) K_{\sigma}(u,v) = \langle \sigma(u,u), \sigma(v,v) \rangle - ||\sigma(u,v)||^2 \ge 0,$$

where $\| \|$ means the norm for the vector space W. Now there might exist a non-asymptotic vector u_0 in V_0 , indeed, suppose that any vector u in V_0 is asymptotic. Then $h_{\alpha}(u, u)$ must be equal to zero, because of $h_{\alpha}(u, u) = \langle \sigma(u, u), \xi_{\alpha} \rangle$ for any orthonormal basis $\{\xi_{\alpha}\}$ for W. If this case can be regarded as the special one of positive semi-definiteness, then it is nothing but the condition (c). Choose an orientation for W, and for fixed vector u_0 and any vector u in V_0 let $\theta(u)$ denote an angle from $\sigma(u_0, u_0)$ to $\sigma(u, u)$. $\theta(u)$ is defined only module 2π but it follows from (2.5) that θ is a continuous function of V_0 into the closed interval $[-\pi/2, \pi/2]$. For a unit sphere S of V centered with origin, the restriction of θ to S is also continuous, so it must attain its maximum

 θ_1 and minimum θ_2 . Again, taking the inequality (2.5) into account, we get $\theta_1 - \theta_2 \le \pi/2$. Let $\bar{\theta} = (\theta_1 + \theta_2)/2$, $\bar{\theta}_1 = \bar{\theta} + \pi/4$ and $\bar{\theta}_2 = \bar{\theta} - \pi/4$, and $\xi(\theta)$ be a unit vector in W to which the direct angle from $\sigma(u_0, u_0)$ is equal to θ . Then, by putting $\xi_{n+1} = \xi(\bar{\theta}_1)$ and $\xi_{n+2} = \xi(\bar{\theta}_2)$, $\{\xi_{n+1}, \xi_{n+2}\}$ is an orthonormal basis for W, and by choosing the angle θ_1 and θ_2 it turns out that

$$\bar{\theta}_2 \leq \theta_2 \leq \theta(u) \leq \theta_1 \leq \bar{\theta}_1$$

for any vector u in S. This implies that the angle between $\xi(\theta(u))$ and $\xi_{\alpha}(\alpha=n+1, n+2)$ is less than or equal to $\pi/2$ for any u in S, and so is the angle between $\sigma(u, u)$ and ξ_{α} , because of $\sigma(u, u) = ||\sigma(u, u)|| \xi(\theta(u))$. Thus the forms h_{α} are both positive semi-definite. This concludes the proof.

For any ξ in W, a symmetric transformation A_{ξ} is defined by $\langle A_{\xi}u,v\rangle = \langle \sigma(u,v), \xi \rangle$. Assume that p=2, and let $\{\xi_{n+1}, \xi_{n+2}\}$ be an orthonormal basis for W. Put $A_{\alpha}=A_{\xi_{\alpha}}$ and then $A_{\theta}=A_{\xi(\theta)}$ for any unit vector $\xi(\theta)=\cos\theta\cdot\xi_{n+1}+\sin\theta\cdot\xi_{n+2}$. Then it turns out that

$$(2.6) A_{\theta} = \cos \theta \cdot A_{n+1} + \sin \theta \cdot A_{n+2}.$$

For the comparison property of the absolute value of $\det A$ the following lemma is proved. This is essentially due to Chen [3].

LEMMA 2.2. Let W be a 2-dimensional vector space. If the associated curvature form R_{σ} is positive semi-definite, then

$$|\det A_{s-\theta}| \leq |\det A_{\theta}|$$
, for all $\theta \in [0, \pi/2]$.

In particular, if R_{σ} is positive definite, then

$$|\det A_{\pi-\theta}| < |\det A_{\theta}|$$
, for all $\theta \in (0, \pi/2)$.

Proof. The first assertion will be only verified. By Lemma 2. 1 it turns out that there exists an orthonormal basis $\{\xi_{n+1}, \xi_{n+2}\}$ in such a way that the function is positive semi-definite, namely $\langle \sigma(u, u), \xi_a \rangle \geq 0$ for any vector u in V and any index α . This means that the symmetric transformation A_{α} is positive semi-definite. For this basis $\{\xi_{n+1}, \xi_{n+2}\}$ the construction above of A_{ε} shows that $A_0 = A_{n+1}$ and $A_{\pi/2} = A_{n+2}$.

Suppose that first A_0 and $A_{x/2}$ are both trivial transformations, that is, they are both zero matrices in the matrix expression. Then the relation

(2.6) implies $A_{\theta}=0$ for all $\theta \in [0, 2\pi]$, namely, $\sigma(u, v)=0$ for any vectors u and v in V, so σ vanishes everywhere on V. So $\det A_{x-\theta} = \det A_{\theta} = 0$ for any θ and the assertion is satisfied.

Next, suppose that either A_0 or else $A_{\pi/2}$ is a non-zero matrix. Since the real valued function: $\theta \rightarrow \det A_{\theta}$ on $[0, \pi/2]$ is a non-trivial real analytic function of θ , its zeroes must be equal to the entire definition domain $[0, \pi/2]$ or it is discrete. Consider first the case where its zeroes are equal to $[0, \pi/2]$. Since there exists a vector u' in V_0 such that $A_{\theta}u'=0$ for any $\theta \in (0, \pi/2)$, we get

$$\langle \sigma(u', u'), \cos \theta \cdot \xi_{n+1} + \sin \theta \cdot \xi_{n+2} \rangle = 0,$$

so that $\langle \sigma(u', u'), \xi_{\alpha} \rangle = 0$ for any α , because of $\langle \sigma(u', u'), \xi_{\alpha} \rangle \geq 0$. Hence $\langle \sigma(u', u'), \xi \rangle = 0$ for any vector ξ in W, which implies that $A_{\xi}u' = 0$ for any vector u' in V_0 . This means that det $A_{\xi} = 0$. Thus under the condition that det $A_{\theta} = 0$ for any θ in $[0, \pi/2]$, we get det $A_{\xi} = 0$ for any unit vector ξ in W. This concludes the assertion.

Suppose next the set $\{\theta: \det A_{\theta}=0\}$ is discrete. A number θ_0 can be picked in $(0, \pi/2)$ such that $\det A_{\theta_0}\neq 0$. Because A_{θ_0} can be regarded as a positive semi-definite symmetric $n\times n$ matrix, it is positive definite and diagonalizable, and there exists an orthonormal basis $\{u_1, \dots, u_n\}$ for V such that the matrix expression of A_{θ_0} is

$$\begin{bmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{bmatrix} = I(\lambda_1, \dots, \lambda_n)$$

with all $\lambda_i > 0$. Again any unit vector $\xi(\theta)$ for $\theta \in [0, \pi/2]$ can be expressed as $\xi(\theta) = c\xi(\theta_0) + s\xi(\pi/2)$, where $c = \cos \theta/\cos \theta_0$ and $s = \sin (\theta - \theta_0)/\cos \theta_0$. Hence $A_{\theta} = cA_{\theta_0} + sA_{\pi/2} = cI(\lambda_1, \dots, \lambda_n) + sA_{\pi/2}$. For a unit matrix $I = I(1, \dots, 1)$ and a matrix $I' = I(1/\sqrt{\lambda_1}, \dots, 1/\sqrt{\lambda_n})$,

$$I'A_{\theta}I'=cI+sI'A_{\pi/2}I'$$

Since $A_{\pi/2}$ is a symmetric positive semi-definite matrix, so is the matrix $I'A_{\pi/2}I'$. Accordingly there exists a regular $n \times n$ matrix P so that it diagonalizes the last matrix, and then

$$P^{-1}(I'A_{\theta}I')P = cI + sI(\mu_1, \dots, \mu_k, 0, \dots, 0),$$

where all $\mu_i > 0$. By taking the determinant of both sides of this equation,

one finds

$$\det A_{\theta} / \prod_{i=1}^{n} \lambda_{i} = \prod_{j=1}^{k} (c + s\mu_{j}) c^{n-k}$$

$$= (\cos \theta)^{n-k} \prod_{j=1}^{k} {\{\cos \theta + \mu_{j} \sin (\theta - \theta_{0})\}} / (\cos \theta_{0})^{n}$$

The estimate of this equation being applied, the comparison of $|\det A_{\theta}|$ with $|\det A_{x-\theta}|$ can be complete. Since λ_i , θ_0 and μ_i are all constant for this equation with respect to the variable θ , it only remains to compare $(\cos\theta)^{n-k}\prod_{j=1}^{k}\{\cos\theta+\mu_j\sin(\theta-\theta_0)\}$ with $(\cos(\pi-\theta))^{n-k}\prod_{j=1}^{k}\{\cos(\pi-\theta)+\mu_j\sin(\pi-\theta-\theta_0)\}$. Namely, the absolute value of each factor in $\prod_{j=1}^{k}\{\cos\theta+\mu_j\sin(\theta-\theta_0)\}$ might be considered. The claim will be proved, if the following inequalities are valid:

$$-\cos\theta - \mu\sin(\theta - \theta_0) \le \cos(\pi - \theta) + \mu\sin(\pi - \theta - \theta_0) \le \cos\theta + \mu\sin(\theta - \theta_0).$$

The first inequality is trivial and for the second one it is reduced to

$$\begin{aligned} &\{\cos\theta + \mu\sin(\theta - \theta_0)\} - \{\cos(\pi - \theta) + \mu\sin(\pi - \theta - \theta_0)\} \\ &= 2\cos\theta(1 - \mu\sin\theta_0). \end{aligned}$$

Since the matrix $cI+sI(\mu_1, \dots, \mu_k, 0, \dots, 0)$ is positive semi-definite, its eigenvalues $c+s\mu_j$ are all of non-negative and so are $\cos\theta+\mu_j\sin(\theta-\theta_0)$ for $j=1,\dots,k$. Hence, as θ tends to 0, we have

$$\lim_{\theta \to 0} \left\{ \cos \theta + \mu_j \sin (\theta - \theta_0) \right\} = 1 - \mu_j \sin \theta_0 \ge 0,$$

which implies that the right inequality is valid. Thus the proof of Lemma 2.2 is complete.

3. Curvature Operator

In this section, the concept of the curvature operator in a Riemannian manifold (M, g) will be introduced and the manifold structures of M which are influenced by some conditions of the operator are investigated. For a point x in M let R_x be an associated curvature operator. A linear map ρ_x^* of $\Lambda^2 M_x$ into $\Lambda^2 M_x^*$ for any point x in M is defined by $u \wedge v \to R_x(\ldots,u,v)$ and by this duality an endomorphism ρ_x of $\Lambda^2 M_x^*$ into itself

is manufactured. It turns out that ρ_z satisfies

$$(3.1) \langle \rho_x(u^* \wedge v^*), w^* \wedge z^* \rangle = \langle \rho_x^*(u \wedge v), w^* \wedge z^* \rangle = R_x(w, z, u, v)$$

for any vectors u, v, w and z in M_x , where u^* denotes the dual form in M_x^* associated with the vector u. The operator ρ_x is called a *curvature operator* at x. Since ρ_x is the symmetric operator, each eigenvalue of it is real. If all eigenvalues of ρ_x are contained in the closed interval $[\lambda, \Lambda]$, then one says $\lambda \leq \rho_x \leq \Lambda$, and if for any point x in M this property is satisfied, then $\rho(M)$ is said to satisfy the condition $\lambda \leq \rho(M) \leq \Lambda$, where $\rho(M)$ is a set which consists of all curvature operators at all points in M.

Now, for an orthonormal basis $\{u_1, \dots, u_n\}$ of M_x and its dual basis $\{\omega^1, \dots, \omega^n\}$ for M_x^* relative to $\{u_1, \dots, u_n\}$, the following equation is given:

$$(3.2) \quad \langle \rho_s(\omega^i \wedge \omega^j), \quad \omega^i \wedge \omega^j \rangle = R(u_i, u_i, u_i, u_i) = -g(R(u_i, u_i)u_i, u_i),$$

from which

$$(3.3) \qquad \langle \rho_x(\omega^i \wedge \omega^j), \ \omega^i \wedge \omega^j \rangle = K(u_i, u_j),$$

where $K(u_i, u_j)$ means a sectional curvature of a plane section spanned by the orthonormal vectors u_i and u_j . It follows that $K(M) \ge 0$ if $\rho(M)$ ≥ 0 . Under the pinching of the curvature operator $\rho(M)$, the curvature tensor R and the Ricci tensor S are also pinched as follows:

(3.4)
$$\lambda(\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl}) \leq -g(R(u_i, u_j)u_k, u_l) \leq \Lambda(\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl})$$
$$\lambda(n-1)\delta_{ii} \leq S(u_i, u_i) \leq \Lambda(n-1)\delta_{ii}.$$

Thus, if $\lambda \leq \rho(M) \leq \Lambda$ then $\lambda \leq K(M) \leq \Lambda$. Remark here that the converse is not necessarily true.

Now, it plays an important role to restrict with the manifold structures of M that the curvature operator $\rho(M)$ is pinched. This is first studied by Yano and Bochner [16]. Suppose that $\lambda \leq \rho(M) \leq \Lambda$. Given any p-form ω in $\Lambda^p M^*$, we put

(3.5)
$$F(\omega) = \sum_{i_{3}, i} \sum_{i_{2}, \dots, i_{p}} S(i, j) \omega(j, i_{2}, \dots, i_{p})$$
$$- \frac{p-1}{2} \sum_{i_{3}, i_{3}, l} \sum_{i_{3}, \dots, i_{p}} R(i, j, k, l) \omega(i, j, i_{3}, \dots, i_{p})$$
$$\omega(k, l, i_{3}, \dots, i_{p})$$

then the function $F(\omega)$ can be bounded from below. Namely, it follows from (3.4) that

$$F(\omega) \ge \{(n-1)\lambda - (p-1)\Lambda\} |\omega|^2.$$

This implies $F(\omega) > 0$ if $\lambda = \Lambda/2$ and 2p < n+1.

In order to generalize the theorem due to Yano and Bochner, the other expression of the function F will be considered, by making use of the curvature operature. Since components of any p-form ω in $\Lambda^p M^*$ with respect to the orthonormal basis $\{u_1, \dots, u_n\}$ for M_x is given by $\omega(i_1, \dots, i_p)$, where $\{\omega^{i_1} \wedge \dots \wedge \omega^{i_p}\}$ $\{i_1, \dots, i_p \in \{1, \dots, n\}\}$ is an orthonormal basis of $\Lambda^p M^*$, the p-form ω is expressed as

$$\omega = \sum_{i_1, \dots, i_p} \omega(i_1, \dots, i_p) \omega^{i_1} \wedge \dots \wedge \omega^{i_p}$$

For a p-form ω at x we shall consider a family of exterior 2-forms $(i_1, \dots, i_p)^{\omega}$ corresponded to the p-form ω , which is defined by

$$(3.6) (i_1, \dots, i_p) = \sum_{k=1}^p \sum_{j_k=1}^n \omega(i_1, \dots, i_{k-1}, j_k, i_{k+1}, \dots, i_p) \omega^{j_k} \wedge \omega^{i_k}.$$

Moreover a family of scalars $(i_1, \dots, i_p)^{\theta(\omega)}$ associated with the form ω is produced. The scalar is also defined by

$$(3.7) (i_1, \dots, i_p)^{\theta(\omega)} = \langle \rho_x(i_1, \dots, i_p)^{\omega}, (i_1, \dots, i_p)^{\omega} \rangle.$$

we have by (2.5)

(3.8)
$$F(\omega) = A(\omega) - \frac{p-1}{2}B(\omega),$$

where

$$\begin{split} A(\omega) = & \sum_{i_1,j} \sum_{i_2,\dots,i_p} S(i,j) \omega(i,i_2,\dots,i_p) \omega(j,i_2,\dots,i_p) \\ B(\omega) = & \sum_{i_2,j_2,k_1,l} \sum_{i_3,\dots,i_p} R(i,j,k,l) \omega(i,j,i_3,\dots,i_p) \omega(k,l,i_3,\dots,i_p) \end{split}$$

The following Lemma 3.1 and lemma 3.2 are due to Meyer [12].

LEMMA 3.1.
$$F(\omega) = \frac{1}{p} \sum_{i_1, \dots, i_p} (i_1, \dots, i_p)^{\theta(\omega)}$$

LEMMA 3.2. If ω is an exterior p-form on M which does not vanishes

at x for $1 \le p \le n-1$, then the associated 2-form is not equal to zero at x. By making use of Lemmas 3.1 and 3.2, the following property is varified.

LEMMA 3.3. Let M be an n-dimensional compact and oriented Riemannian manifold. If all curvature operators satisfy $\rho(M) \ge 0$ and if there exists a point x_0 in M at which the curvature operator ρ_{x_0} is positive, then M is a real homology sphere.

Proof. The hypothesis $\rho(M) \ge 0$ implies that for a point x all eigenvalues of the curvature operator ρ_x are non-negative, so by (3.6) any exterior p-form satisfies the condition:

$$(i_1, \dots, i_p)^{\theta(\omega)} \geq 0$$

for any indices i_1, \dots, i_p in $\{1, 2, \dots, n\}$. It follows from Lemma 3.1 that $F(\omega) \ge 0$ and the equality holds true if and only if all scalars $(i_1, \dots, i_p)^{\theta(\omega)}$ for any indices i_1, \dots, i_p are equal to zero. It implies that in the equation

$$(\Delta\omega,\omega) = \|\nabla\omega\|^2 + Q(\omega),$$

where $Q(\omega) = f_M F(\omega) dV_M$, $\Delta \omega$ is the Laplacian of ω and $\nabla \omega$ is the covariant derivative of ω , the second term $Q(\omega)$ of the right hand side is non-negative. If the p-form ω is harmonic, then $\Delta \omega = 0$ and we obtain that $F(\omega)$ and $\nabla \omega$ vanish everywhere on M. Thus the p-form ω is parallel.

On the other hand, since the curvature operator ρ_{x_0} at the given point x_0 is positive by means of the assumption, the scalar $(i_1, \dots, i_p)^{\theta(w)x_0}$ is non-negative, and it is equal to zero if and only if the associated 2-form of ω vanishes at x_0 . However, since $F(\omega)$ vanishes everywhere, Lemma 3.1 yields all scalars $(i_1, \dots, i_p)\theta(\omega)$ are equal to zero for any indices i_1, \dots, i_p and therefore

$$(i_1, \cdots, i_p)^{\omega_{x_0}} = 0.$$

It follows from Lemma 3.2 that the *p*-form ω is equal to zero at the point x_0 . Since ω is parallel, the norm $\|\omega\|$ vanishes everywhere on M. Therefore, the theorem due to Hodge asserts $H^p(M, R) = 0$ for 0 . This completes the proof.

THEOREM 3.4. Let M be an $n(\geq 3)$ -dimensional compact and oriented

Riemannian manifold where all sectional curvatures are greater than and equal to a constant c, and \widetilde{M} be an (n+2)-dimensional complete simply connected Riemannian manifold of constant curvature c. If M is isometrically immersed in \widetilde{M} and if c>0 or c=0 and there exists a point x_0 at which all sectional curvatures are positive, then M is a real homology sphere.

Proof. Let f be an isometric immersion of M into \widetilde{M} . For any point x in M we shall denote f(x) in \widetilde{M} by the same symbol x since there is no danger of confusion and moreover since the computation is local. Furthermore, a tangent vector u at x is identified with the tangent vector $df_x(u)$. Thus the tangent space M_x is a subspace of the tangent space \widetilde{M}_x to the ambient space at x. Let N_x be the orthogonal complement of M_x in \widetilde{M}_x , which is called the normal space to M at x, and σ be the second fundamental form of the immersion f. For the triple (M_x, N_x, σ_x) at each point x in M, algebraic preliminaries which are prepared for in §2 can be applied. Let R_σ be the associated curvature form on M_x which is defined by (2.1) and K_σ be the real valued map on $M_x \times M_x$ defined by (2.2). Then it follows from the Gauss equation for the theory of submanifolds in a real space form that we have

$$R_{\sigma}(u \wedge v, w \wedge z) = R(u, v, w, z) - c(\langle u, w \rangle \langle v, z \rangle - \langle u, z \rangle \langle v, w \rangle)$$

for any vectors u, v, w and z in M_z , and hence

$$K_{\sigma}(u, v) = R_{\sigma}(u \wedge v, u \wedge v) = (K(u, v) - c) (\|u\|^2 \|v\|^2 - \langle u, v \rangle^2).$$

By the assumption of the theorem it means $K_{\sigma}(u, v) \ge 0$. Thus, by taking Lemma 2.1 the associated form R_{σ} satisfies $R_{\sigma} \ge 0$. Hence, the curvature operator ρ_x at x satisfies $\rho_x \ge c$, because its operator ρ_x is given by $\langle \rho_x(u^* \wedge v^*), w^* \wedge z^* \rangle = R_x(u, v, w, z)$. On the other hand, the assumption shows that $\rho(M) \ge c \ge 0$ and there exists a point x_0 at which $\rho_{x_0} > 0$. It implies that theorem 3.4 can be applied. This concludes the proof.

4. Proof of Main theorem

This section is devoted to determining completely the k-th integral homology group of M. Let M be an n-dimensional compact oriented Riemannian manifold. For a given function h on M, a point x in M is called a critical point of h if $(dh)_x=0$ and a critical form of h is said to be non-degenerate if the hessian form of h is non-degenerate. In this

case the dimension of maximal dimensional subspaces of the tangent space M_x on which the hessian form is negative definite is called the *index of* the critical point x. Set

 $\beta_k(h) = \text{the number of critical points of index } k \text{ of } h, \\
\beta_k(M) = \min\{\beta_k(h); h \text{ is a Morse function}\},$

where a Morse function means a function on M with only non-degenerate critical points.

For arbitrary field F, let $b_k(M, F)$ be the rank of $H^k(M, F)$ as a module over F, which is called a k-th Betti number. If F is a field of characteristic zero, these modules are vector space over F, so $b_k(M, F)$ is the dimension of the vector space $H^k(M, F)$. Since M is compact and oriented, by Poincaré duality theorem

$$b_k(M, F) = b_{n-k}(M, F).$$

On the other hand, it follows from Morse's inequalities [13] that one yields

$$(4.1) b_k(M, F) \leq \beta_k(M) \leq \beta_k(h),$$

(4.2)
$$\sum_{i=1}^{k} (-1)^{i} b_{k-i}(M, F) \leq \sum_{i=1}^{k} (-1)^{i} \beta_{k-i}(h).$$

Let M be now isometrically immersed in R^N under the isometric immersion f. Let B be the bundle of unit normal spheres over M, S^{N-1} be a unit sphere of R^N centered with origin, and G be a Gauss map of B into S^{N-1} . A Gauss map is a map which assigns to each normal in B a unit vector through the origin of R^N parallel to the normal. But the image of ξ under the Gauss map may be identified with itself. For any ξ in S^{N-1} a height function h on M is defined by

$$h_{\xi}(x) = \langle f(x), \xi \rangle$$

where \langle , \rangle means a Euclidean product on \mathbb{R}^{N} .

On the other hand, for the isometric immersion f of M into R^N and a normal ξ in B, let A_{ξ} be the symmetric transformation associated with the second fundamental form on M induced by f. Then the total curvature $\tau(M)$ of M immersed in R^N by the isometric immersion f is defined by

(4.3)
$$\tau(M) = \tau(M, f, R^{N}) = \frac{1}{\text{vol } S^{N-1}} \int_{B} |\det A_{\epsilon}| dV_{B},$$

where dV_B means the volume element of B and vol S^{N-1} denotes the volume of unit shere S^{N-1} in R^N . By means of the work of Chern and Lashof [4,5] the total curvature $\tau(M)$ of M is the volume of the image of B under the parallelism G. The critical point ξ of the map, that is, the point where the functional determinant of the map is zero, is exactly the point where the hessian of the height function h_{ξ} is of rank < n. It is well known that x is a critical point of h_{ξ} if and only if ξ is normal at x, and at a critical point the hessian of h_{ξ} is the second fundamental form of M in the direction ξ . Expresses somewhat differently, the critical point ξ of G is the normal to M where the height function h_{ξ} has degenerate critical points. By Sard's theorem, their image on S^{N-1} has measure zero. Thus, for almost all unit normals ξ the height function h_{ξ} on M, with fixed ξ , has only non-degenerate critical points, it is the Morse function.

Choose a normal ξ in B with respect to which the height function h_{ξ} is a Morse function. Following Kuiper [9], the total curvature τ_k of index k is defined by

(4.4)
$$\tau_{k} = \frac{1}{\text{vol } S^{N-1}} \int_{S^{N-1}} \beta_{k}(\xi) dV_{S},$$

where $\beta_k(\xi) = \beta_k(h_{\xi})$. This can be regarded as the average number of critical points of index k. When the normal ξ is replaced by $-\xi$, critical points of index k change into critical points of index n-k and it means

$$\tau_{n-k} = \tau_k.$$

Now, for the Morse function h it follows from (4.1) and (4.4) that one yields $b_k(M, F) \leq \beta_k(\xi)$. By averaging this inequality over S^{N-1} , the following relation is obtained: $b_k(M, F) \leq \tau_k$. By Morse's inequalities,

$$b_1(M, F) - b_0(M, F) \leq \beta_1(\xi) - \beta_0(\xi).$$

Again, by integralizing this inequality, the following relation of the Betti number to the total curvatures is given:

$$b_1(M, F) - b_0(M, F) \leq \tau_1 - \tau_0$$

Hence $b_1(M, F) \le \tau_1 - \tau_0 + 1$, because M is connected. Since M is compact

and oriented, the equation (4.5) and the Poincaré duality theorem imply

$$b_{n-1}(M, F) \leq \tau_{n-1} - \tau_n + 1$$
,

which will give the following inequality:

$$(4.6) b_1(M, F) + \dots + b_{n-1}(M, F) \le \tau_1 + \dots + \tau_{n-1} - \tau_0 - \tau_n + 2,$$

for any field F.

Since the image of the bundle B of unit normal spheres over M under the map G is the same as the set of points ξ in S^{N-1} , each counted a number of times equal to the number of critical points of the height function h_{ξ} on M, and since the total curvature is the volume of the image of B, it follows from (4,3) and (4,4) that we obtain

$$\tau(M) = \tau_0 + \tau_1 + \cdots + \tau_n.$$

Let B_+ be the set of all unit normals ξ such that A_{ξ} is definite and B_0 be the set of all unit normal ξ such that A_{ξ} is not definite. Then, by the definition the total curvature $\tau(M)$ is reduced to

$$\tau(M) = \frac{1}{\operatorname{vol} S^{N-1}} \left(\int_{B_{+}} |\det A_{\xi}| \, dV_{B} + \int_{B_{B}} |\det A_{\xi}| \, dV_{B} \right).$$

and the meaning of the hessian of the height function implies

$$\tau_1 + \dots + \tau_{n-1} \leq \frac{1}{\text{vol } S^{N-1}} \int_{B_A} |\det A_{\ell}| \, dV_B.$$

Combining together with some results obtained above, we have

(4.7)
$$\tau_1 + \dots + \tau_{n-1} - \tau_0 - \tau_n \leq \frac{1}{\text{vol } S^{N-1}} \left(\int_{B_0} |\det A_{\ell}| \, dV_B \right) - \int_{B_+} |\det A_{\ell}| \, dV_B \right).$$

For the remainder of this section we are concerned with the proof of Main theorem. Given a point x in M, the tangent space M_x and the normal space N_x with respect to the Euclidean scalar product in R^{n+2} can be regarded as vector spaces V and W respectively, and as a symmetric map of V into W the second fundamental form σ_x at x is considered. For this triple $\{M_x, N_x, \sigma_x\}$, one can select an orthonormal basis $\{\xi_{n+1}, \xi_{n+2}\}$ for W such that $\langle \sigma_x(u, u), \xi_a \rangle \ge 0$ for any index α and any vector

u in M_x , and for this basis

$$|\det A_{\pi-\theta}| \leq |\det A_{\theta}|$$
 for $\theta \in [0, \pi/2]$,

where $A_{\theta} = A_{\xi(\theta)}$, $\xi(\theta) = \cos \theta \cdot \xi_{n+1} + \sin \theta \cdot \xi_{n+2}$. Hence

$$\int_{B_0} |\det A_{\varepsilon}| dV_{B} \leq \int_{B_+} |\det A_{\varepsilon}| dV_{B},$$

because an eigenvalue of the transformation A_t is non-negative for $\theta \in [0, \pi/2]$. Since there exists a point x_0 at which all sectional curvatures are positive by the assumption, we may suppose that all sectional curvatures are positive on a compact set C with positive measure, in which the point x_0 is contained, because sectional curvatures are continuous on M, Accordingly

$$|\det A_{z-\theta}| < |\det A_{\theta}|$$
 on C .

Thus we have

$$\int_{B_{\mathtt{A}}} |\det A_{\mathfrak{k}}| \, dV_{\mathtt{B}} < \int_{B_{\mathtt{k}}} |\det A_{\mathfrak{k}}| \, dV_{\mathtt{B}},$$

which is an inequality due to Chen [3]. Combining (4.6) and (4.7) together with the above inequality, one obtains

$$(4.8) b_1(M,F) + \cdots + b_{n-1}(M,F) < 2,$$

for any field F.

First of all, under the hypothesis of Main theorem it will be shown that M must be simply connected. Suppose that M is not simply connected. The fundamental group $\pi_1(M)$ contains a subgroup isomorphic to Z_p for some prime number p. Let (\widetilde{M}, π) be a Riemannian covering of M corresponding to this subgroup, where π is the covering projection. It is easily seen that \widetilde{M} is also compact and oriented over Z_p , and \widetilde{M} satisfies the same property for the curvature as that of M. Moreover the composition $f \circ \pi$ of the projection π with the isometric immersion f becomes again an isometric immersion of \widetilde{M} into R^{n+2} . For the Betti number $b_k(\widetilde{M}, Z_p) = \dim H^k(\widetilde{M}, Z_p)$, the Riemannian covering (\widetilde{M}, π) gives $b_1(\widetilde{M}, Z_p) = b_{n-1}(\widetilde{M}, Z_p) = 1$. Under this situation $(\widetilde{M}, f \circ \pi, R^{n+2})$ the inequality (4.8) can be obtained, and these properties contradict each other. Thus M is simply connected.

Now, since Theorem 3.4 means that M is a real homology sphere, we need only show that M has no torsion. In general, the k-th homology group $H^k(M, K)$ over Z is expressed as

$$H^{h}(M,Z) = \underbrace{Z \oplus \cdots \oplus Z}_{b_{h}} \oplus Z_{th}^{1} \oplus \cdots \oplus Z_{th}^{ch},$$

Then the torsion coefficient $\{t_k{}^j\}$ satisfy the property: $t_k{}^j|t_k{}^{j+1}$, by means of the Poincaré duality theorem and the universal coefficient theorem it is easily seen that $t_k{}^j=t_{n-k-1}{}^j$ for any $j=1, \dots, c_k=c_{n-k-1}$. On the other hand, in this case the k-th homology group $H^k(M, R)$ satisfies $H^k(M, R)=R\oplus \cdots \oplus R$ $(b_k$ -times). On the contrary, for a prime number p, it is well known that the universal coefficient theorem implies again

$$H^k(M, \mathbb{Z}_p) = \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p(b_k + \lambda_k + \lambda_{k-1} - \text{times})$$

where λ_k is the number of integers j such that p is a divisor of the integer t_k^j .

By coming back to the proof and again by making use of Theorem 2. 2, one finds

$$H^{k}(M, R) = H^{n-k}(M, R) = 0$$
 for any $k=1, \dots, n-1$.

Hence, under this situation, $b_k=0$ for any $k=1, \dots, n-1$. Now, suppose that M contains torsions, that is, $H^k(M, Z)$ has the torsion part, then there exists a prime p such that $\lambda_k>0$ and therefore

$$b_k(M, Z_p) = b_{n-k}(M, Z_p) \ge 1.$$

If k is different from n-k, then it contradicts to the inequality (4.8) accordingly k=n-k. Thus, if M is not a homology sphere over the integers, it must be even dimensional, say n=2m, and all its torsions must lie in $H^{m}(M, Z)$. Hence we get $t_{m}^{j}=t_{n-m-1}^{j}=t_{m-1}^{j}$, because of n=2m, which implies

torsion
$$H^m(M, Z) = torsion H^{m-1}(M, Z)$$
.

Again, by Poincaré duality theorem, it contradicts to k=m. Thus we have $H^k(M, Z) = 0$ for $k=1, 2, \dots, n-1$. It finishes the proof of Main theorem.

Acknowledgement The authers wish to express his gratitude to Professor

Hisao Nakagawa for his advices and encouragement.

Bibliography

- 1. Y.Y. Baldin and F. Mercuri, Isometric immersions in codimension two with non-negative curvature, Math. Z., 173 (1980), 111-117.
- 2. R.I. Bishop, The holonomy algebra of immersed manifolds of codimension two, J. Differential Geometry, 2 (1968), 347-353.
- C.S. Chen, On tight isometric immersion of codimension two, Amer. J. Math., 94 (1972), 974-990.
- 4. S.S. Chern and R.K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math., 79 (1957), 306-318.
- 5. S.S. Chern and R.K. Lashof, On the total curvature of immersed manifolds II, Michigan Math. J., 5 (1958), 5-12.
- S. Gallot and D. Meyer, Operateur de courbure et Laplacien des forme differentielle d'une variétés riemannienne, J. Math. pures et appl., 54 (1975), 259– 284.
- 7. S.I. Goldberg, Curvature and homology, Academic Press, 1962.
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, II, Interscience Publishers, 1963, 1969.
- N.H. Kuiper, Minimal total absolute curvature for immersions, Invent Math., 10 (1970), 209-238.
- 10. A. Lichnerowicz, Géométrie des groupes de transformations, Ravaux et Recherches Math., Ounod, Paris, 1958.
- 11. S. Maclane, Homology, Academic Press, 1963.
- 12. D. Meyer, Sur les variétés riemanniennes à operateur de courbure positif, C.R. Acad. Sc. Paris, 272 (1971), 482-485.
- 13. J. Milnor, *Morse Theory*, Ann. of Math. Studies, No. 51, Princeton Univ. Press, 1963.
- 14. J.D. Moore, Codimension two submanifolds of positive curvature, Proc. Amer. Math. Soc., 70 (1978), 72-74.
- 15. A. Weinstein, Positively curved n-manifolds in R^{n+2} , J. Differential Geometry, 4 (1970), 1-4.
- K. Yano and S. Bochner, Curvature and Betti Number, Annals of Math. Studies, No. 32, Princeton Univ. Press, 1953.

Hyosung Women's University Taegu 634, Korea

Kyung Nam University Masan 610, Korea