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ON TOPOLOGICAL STRUCTURE OF A CERTAIN

SUBMANIFOLD IN R"+2

YONG BAI BAlK AND YANG lA! SHIN

1. Introduction

This is a kind of reports which is devoted to classifying certain
submanifold of codimension 2 immersed in a Euclidean space Rn+:.. As
is well known, if for a compact connected hypersurface M in a Euclidean
space R"+1 the Gauss curvature never vanishes on M, then the second
fundamental form of M is definite everywhere on M and moreover M is
homeomorphic to a sphere.

On the other hand, since a Riemannian submanifold of positive curvature
has the Gauss curvature where never vanishes, it seems to be interesting
to investigate that for an n-dimensional compact Riemannian manifold of
positive curvature immersed isometrically in Rn+:' whether the property
stated above in the hypersurface is valid or not. This problem was treated
by Bishop [2J, Gallot-Meyer [6J, Meyer [I2J and Weinstein [15J. It
has been almost completely classified by Moore [14J. Moore proved that
if M is of positive curvature, then M is a homotopy sphere. This result
is generalized by Baldin and Mercuri [IJ in the case of non-negative
curvature, which is stated as follows: If M is of non-negative curvature,
then M is either a homotopy sphere or diffeomorphic to a product of
two spheres.

The purpose of this paper is to verify the particular case of the result
due to Baldin and Mercuri from a Ciifferent point of view. In the last
section we prove the following:

THEOREM. Let M be an n(~3)-dimensional compact con'!Uctedand
oriented Riemannian manifold of non-negative curvature. If there is a
point x on M at which all sectiomll curvatures are positive and if M is
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isometrically immersed in a Euclidean space R"+2, then M is an integral
lwmological sphere.

2. Preliminaries

Let V and W be real vector spaces of finite dimensions nand p
respectively, and <I be a symmetric bilinear map of Vx V into w:
Suppose nl;;:;;2 and W has an inner product <, >. A vector u in Vo=

V - {a} is said to be asymptotic if <I(u, u) =0 holds. Define the associated
curvature form R q : A2VxA2V to R by

(2.1) Ru(ul\v, wl\z) =<a(u, w), a(v, z)-<a(u, z), a(v, w)

for any vectors u, v, wand z in V. The map Rq is again symmetric and
hence the eigenvalues of R" are real. Rq is said to be positive definite or
positive semi-definite according as all eigenvalues of Rq are positive or
non-negative, respectively. A real valued map K" is next defined by

(2.2) Kq(u, v) =Rq(ul\v, ul\v)

whenever ul\v*O. The map K" is said to be positive definite or positive
semi-definite according as K q(u, v) is positive or non-negative for linearly
independent vectors u and v in Vo, respectively. Consider the following
conditions for the linear map:

(a) R" is positive semi-definite.
(b) K" is positive semi-definite.
(c) There exists an orthonormal basis {e"+h "', ';"+/I} for W in such a

way that the real valued function ha. on Vx V defined by h.. (u, v) =
(a(u, v), fi..>is non-negative for any index a=n+ 1, "', n+p.

LEMMA 2.1. (l) (a)-l> (b). (2) (c)-l> (a). (3) In particular, if P=2,
the conditions above are all equivalent.

Proof. The assertion (1) is trivial. Suppose that the condition (c)
holds. By making use of the function h.. for an orthonormal basis {f;a.},
an image of <I is given by a (u, v) = :[;ha. (u, v) f;a.. Then we have..

R,,(ul\v, wl\z) =2:: {h.. (u, w)ha.(v, z) -ha.(u, z)h.. (v, w)}.

For a fixed index a, real valued function Ra. is given by

(2.3) Ra. (ul\v, wl\z) =ha.(u, w)h.. (v, z) -h.. (u, z) h.. (v, w),
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(2.4)
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In order to prove that R, is positive semi-definite, it suffices to show that
all the map R. are positive semi-definite. For fixed index a, let {u!> "',
un} be an orthonormal basis for V which diagonalizes the function ha;
namely, ha(u;, Uj) =).iOij. Here and in the sequel, indices i and j run over
the range {l,2, ...• n} and an index a run over the range {n+ 1, "',
n+p}. unless otherwise stated. Then ).i>O for all indices i, because ha
is positive semi-definite. Since the inner product <,) of A2V is by
definition

<U!\v, w!\z)=<u, w)<v, z)-<u, z)<v, w).

then the definition (2. 3) of the function Ra implies

Ra(ui!\uj, Uk!\U/) =).i)./Ui!\Uj, Uk!\U/).

It means that {Ui!\Uj: i<j} forms an orthonormal basis for A2V which
diagonalizes Ra with eigenvalues ).i).j (~O). So Ra is positive semi­
definite.

In the case where P=2. it only remains to prove that the condition
(b) implies the condition (c). Suppose that the map K, is positive semi­
definite. Then for all pairs (u. v) of linearly independent vectors. we
have

(2.5) K,(u. v) =<a(u, u), a (v. v) )-II(1(u, v) W~O,

where 11 11 means the norm for the vector space W. Now there might
exist a non-asymptotic vector Uo in Vo• indeed. suppose that any vector
u in Vo is asymptotic. Then ha(u. u) must be equal to zero, because of
ha(u. u) = «(1(u. u), ~a) for any orthonormal basis {~a} for W. If this
case can be regarded as the special one of positive semi-definiteness. then
it is nothing but the condition (c). Choose an orientation for W, and
for :fixed vector Uo and any vector U in Vo let O(u) denote an angle from
(1 (uo. uo) to (1(u. u). O(u) is defined only module 2tr but it follows from
(2. 5) that 0 is a continuous function of Vo into the closed interval
[-tr/2. tr/2]. For a unit sphere S of V centered with origin, the
restriction of 0 to S is also continuous, so it must attain its maximum
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01 and minimum 0%. Again, taking the inequality (2.5) into account,
we get 01-0z~1I:/2. Let 0= (OI+0z)/2, 01=0+11:/4 and Oz=0-1I:/4, and
HO) be a unit vector in W to which the direct angle from a (uo, uo) is
equal to O. Then, by putting e"+1=H01) and e"+2= !; (0%) , {!;"+1' e"+2}
is an orthonormal basis for W, and by choosing the angle 01 and fJ% it
turns out that

1J%~O%~O(u)~01~1J1

for any vector u in S. This implies that the angle between HO (u)) and
e.. (a=n+l, n+2) is less than or equal to 11:/2 for any u in S, and so is
the angle between l1(u,u) and 1;.., because of a(u,u)=lIa(u,u)IIHfJ(u)).
Thus the forms h.. are both positive semi-definite. This concludes the
proof.

For any t; in W, a symmetric transformation A e is defined by (Aeu, v)
=(a(u, v), t;). Assume that P=2, and let {!;"+h t;"+2} be an orthonormal
basis for W. Put A..=Ae• and then A,=Aem for any unit vector t;(O) =
COS{I'f;"H +sinfJ'f;"+2' Then it turns out that

(2.6)

For the comparison property of the absolute value of detA the following
lemma is proved. This is essentially due to Chen [3J.

LEMMA 2. 2. Let W be a 2-dimensional vector space. If the associated
curvature form R" is positive semi-definite, then

IdetA._,I~ldetA,I, for all OE[O, 1I:/2J.

In particular, if R" is positive definite, then

Idet A._, I<Idet A, I, for all OE (0, 11:/2).

Proof. The first assertion will be only verified. By Lemma 2. 1 it turns
out that there exists an orthonormal basis {f;"+b .;"+%} in such a way
that the function is positive semi-definite, namely (a(u, u), f;..)~0 for
any vector u in V and any index. a. This means that the symmetric
transformation A.. is positive semi-definite. For this basis {f;"+h t;"+2} the
construction above of Ae shows that A o=A"+l and A. I %=An+2.

Suppose that first Ao and A. /z are both trivial transformations, that is,
they are both zero matrices in the matrix expression. Then the relation
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(2.6) implies A,=O for all OE[O, 2nJ. namely, O'(u, v) =0 for any vectors
u and v in V. so a vanishes everywhere on V. So det A .._,=det A,=O
for any fJ and the assertion is satisfied.

Next, suppose that either Ao or else A"/2 is a non-zero matrix. Since
the real valued function: O-det A, on [0. 11'/2J is a non-trivial real
analytic function of O. its zeroes must be equal to the entire definition
domain [0. 11'/2J or it is discrete. Consider first the case where its zeroes
are equal to [0. 11'/2J. Since there exists a vector u/ in Vo such that
A,u'=O for any OE(O. 11'/2). we get

(o'(u/, u/). cos O·e,,+! +sin O·e"+2)=0.

so that (o'(u/. u/), e.)=o for any «. because of (o'(u/, u/), e.)~o. Hence
(o'(u/. u/). e)=o for any vector e in W; which implies that Aeu' =0 for
any vector u/ in Vo• This means that det At= O. Thus under the condition
that det A,=O for any 0 in [0, 11'/2J, we get det Ae=O for any unit
vector e in W. This concludes the assertion.

Suppose next the set {fJ: det A,=O} is discrete. A number ()o can be
picked in (0, 11'/2) such that det A,.:;t:O. Because A,. can be regarded
as a positive semi-definite symmetric n X n matrix. it is positive definite
and diagonalizable. and there exists an orthonormal basis {Uh "', u,,} for
V such that the matrix expression of A,. is

[2, '".J -[(2" .... 2,,)

with all Ai>O. Again any unit vector HO) for OE[O, 11'/2J can be
expressed as HO) =ce(Oo) +se(11'/2) , where c=cos O/cos fJo and s=sin
(O-fJo) /cos fJo. Hence A,= cA,. +SA../2=c!(Ah .... An) +SA../2• For a unit

matrix ]=](1.· ..,1) and a matrix I'=]O//AIo"',l//A,,),

]/A,]'=cI+sI'A. /2I'.

Since A"/2 is a symmetric positive semi-definite matrix, so is the matrix
]/A.12I'. Accordingly there exists a regular n x n matrix P so that it
diagonalizes the last matrix, and then

p-l (1/ A,I')P=cI+Sl(Ph "', Pk. O. ",,0),

where all Pi>O. By taking the determinant of both sides of this equation,
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" k
det A,/lTA;= IT (C+ SPj) C"-k

;=1 j=l

The estimate of this equation being applied, the comparison of Idet A, I
with Idet A .._, I can be complete. Since A;, 00 and pj are all constant for
this equation with respect to the variable 0, it only remains to compare

k k
(cos 0) "-klT {cos 0+ pj sin(O-Oo) with (cos(,,-O) ) "-klT {cos(n -0) + pj sin

j=1 j=l k
(n-O-Oo)}. Namely, the absolute value of each factor in IT{cosO+Pj

j=l

sin(O-Oo)} might be considered. The claim will be proved, if the
following inequalities are valid:

-cos 0-P sin (0-00 ) ~cos(n--O) + P sin(n-O-Oo) ~cos0+ P sin(O-Oo).

The first inequality is trivial and for the second one it is reduced to

{cos 0+ P sin(0-00) } - {cos(n--O) + P sin (n--O-Oo) }
= 2 cos 0(1-P sin 00) •

Since the matrix cI+sI(Ph "', pk, 0, "', 0) is positive semi-definite, its
eigenvalues c+spj are all of non-negative and so are cosO+pjsin(O-Oo)
for j = 1, "', k. Hence, as 0 tends to 0, we have

lim {cos f) + pj sin (0 - 00) } = 1-pj sin 00 ;;;:;; 0,
'-0

which implies that the right inequality is valid. Thus the proof of Lemma
2. 2 is complete.

3. Curvature Operator

In this section, the concept of the curvature operator in a Riemannian
manifold (M, g) will be introduced and the manifold structures of M
which are influenced by some conditions of the operator are investigated.
For a point x in M let R.. be an associated curvature operator. A linear
map P..* of A2M.. into A2M..* for any point x in M is defined by ul\v­
R.. (. , . , u, v) and by this duality an endomorphism p.. of A2M..* into itself
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is manufactured. It turns out that p", satisfies

(3.1) (p,,(U*/\v*) , w*/\z*»= (p",*(u/\v) , w*/\z*»=R",(w, %, u, v)

for any vectors u, v, w and z in M"" where U* denotes the dual form in
M"* associated with the vector u. The operator p" is called a curvature
operator at x. Since p" is the symmetric operator, each eigenvalue of it
is real. If all eigenvalues of p", are contained in the closed interval [A,
A], then one says A:iap,,:;iA, and if for any point x in M this property
is satisfied, then p(M) is said to satisfy the condition A~p(M) ~A,

where p (M) is a set which consists of all curvature operators at all
points in M.

Now, for an orthonormal basis {UIt "', u,,} of M" and its dual basis
{col, "', w"} for M,,* relative to {UIt "', U,,}, the following equation IS

given:

(3.2) (p,,(wi/\coJ) , Cl!/\wJ)=R(uit Uit Ui, Uj) = -g(R(u;, UJ)Ui, uJ),

from which

(3.3)

where K(u" Uj) means a sectional curvature of a plane section spanned
by the orthonormal vectors Ui and U/. It follows that K(M') ~O if p(M)
~O. Under the pinching of the curvature operator p(M), the curvature
tensor R and the Ricci tensor S are also pinched as follows:

(3.4) A(8iZ8/k-8u,o/z) :.i -g(R (Ui, Uj)UA, uz) ~A(/jzz/jjk-Oi1,oJz)

A(n-l)8i/::;;;S(uz, Uj) ~A(n-l)8i/.

Thus, if A:;ip(M) ~A then A::;;;K(M) :;iA. Remark here that the converse
is not necessarilly true.

Now, it plays an important role to restrict with the manifold structures
of M that the curvature operator p(M) is pinched. This is first studied
by Yano and Bochner [16J. Suppose that A:;ip(M) ~A. Given any
p-form w in A'M*, we put

(3.5) F(w) = L: L: S(i, j)w(j, i 2, "', i,)
i,j 'I, ...'p

P-l", '" R("kl) (.... )--2- LJ LJ ',J, , lO ',J, '3, "',',
i,J,',' is, •••;,

lO(k, l, i 3, "', i,)
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then the function F(w) can be bounded from below. Namely, it follows
from (3. 4) that

F(w) 'ii;, {(n- 1) A- (p-l)A} Iw 1
2

•

This implies F(w) >0 if 1=A/2 and 2P<n+ 1.
In order to generalize the theorem due to Yano and Boch.ner, the other

expression of the function F will be considered, by making use of the
curvature operature. Since components of any p-form w in APM* with
respect to the orthonormal basis {ut. .. ', un} for M% is given by w(it. ...,
i,). where {Wi' /\···/\Wip} (ih ••• , ipE U•...• n}) is an orthonormal basis
of APM*, the p-form w is expressed as

w= L:: w(ih •••• ip)Wi'/\···/\WiP.
i 1 , ••• ,ip

For a p-form w at x we shall consider a family of exterior 2-forms
(ih •••• ip)" corresponded to the p-form w. which is defined by

(3.6)

Moreover a family of scalars (it.···. ip) 8 :..) associated with the form w is
produced. The scalar is also defined by

(3.7) (ih ••. , i,)8'''') = (p,,(ih •••• ifJ)"" (it. ...• ifJ)"')'

we have by (2. 5)

(3.8)

where

F(w)=A(w)- P;l B(w),

A (w) = L:: L:: S(i, j)w(i, i 2, ••• , i,) wU, i 2, ••• , ip)
i,i i 2 , ••• ,i,

B(w) = L: E R(i, j. k, £)w(i. j, ig, ...• i,)w(k.l. ig• ...• i,)
i,i,k,l i s ,_ •• ,i,

The following Lemma 3. 1 and lemma 3. 2 are due to Meyer [12].

LEMMA 3.1. F(w)=~ L: (ih .'., i p)8(")

P 1
"

••• ,;p

LEMMA 3. 2. If w is an exterior p-form on M which does not vanishes
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at x for l~p~n-l. then the associated 2-form is not equal to zero at x.
By making use of Lemmas 3. 1 and 3. 2. the following property is

varified.

LEMMA 3. 3. Let M be an n-dimensional compact and oriented Riemannian
manifold. If all curvature operators satisfy p(M) ~O and if there exists
a point Xo in M at which the curvature operator p$O is positive. then M is
a real homokgy sphere.

Proof. The hypothesis p(M) ~O implies that for a point x all eigenvalues
of the curvature operator p$ are non-negative. so by (3.6) any exterior
p-form satisfies the condition:

(i '" i ),:..)~OIt • p -

for any indices i h ., '. i p in U.2..... n}. It follows from Lemma 3. 1 that
F(w) ~o and the equality holds true if and only if all scalars (ih ....
i p)' ~ ..) for any indices i h "'. i p are equal to zero. It implies that in the
equation

(L1w. w) = 11 vw 11 2 +Q(w).

where Q(w) = JMF(w) dVM• L1w is the Laplacian of wand 17w is the
covariant derivative of w. the second term Q(w) of the right hand side
is non-negative. 1£ the p-form w is harmonic. then L1w=O and we obtain
that F(w) and Vw vanish everywhere on M. Thus the p-form w is
parallel.

On the other hand. since the curvature operator P"'O at the given point
Xo is positive by means of the assumption. the scalar (ilt • ... ip) 1(10)"'0 is
non-negative. and it is equal to zero if and only if the associated 2-form
of w vanishes at xo. However. since F(w) vanishes everywhere. Lemma
3.1 yields all scalars (ih .... ip)O(w) are equal to zero for any indices
i h .... i p and therefore

(ilt .... i p) ..··=0.

It follows from Lemma 3. 2 that the p-form w is equal to zero at the
point xo. Since w is parallel. the norm 11 w 11 vanishes everywhere on
M. Therefore. the theorem due to Hodge asserts HP(M, R) =0 for 0<
p<n. This completes the proof.

THEOREM 3.4. Let M be an n(~3)-dimensional compact and oriented



24 Yong Bai Baik and Yang Jae Shin

Riemannian manifold where all sectional curvatures are greater than and
equal to a constant c, and M be an (n +2) -dimensional complete simply
connected Riemannian manifold of constant curvature c. If M is isometrically
immersed in M and if c>0 or c= 0 and there exists a point Xo at which
all sectional curvatures are positive, then M is a real homology sphere.

Proof. Let f be an isometric immersion of M into M. For any point
x in M we shall denote f(x) in M by the same symbol x since there
is no danger of confusion and moreover since the computation is local.
Furthermore, a tangent vector u at x is identified with the tangent vector
df,,(u). Thus the tangent space M" is a suhspace of the tangent space
M" to the ambient space at x. Let N" be the orthogonal complement of
M" in M", which is called the normal space to M at x, and a he the
second fundamental form of the immersion f. For the triple (M", N", a,,)
at each point x in M, algebraic preliminaries which are prepared for
in §2 can he applied. Let R" be the associated curvature form on M"
which is defined by (2. 1) and K" be the real valued map on M" X M"
defined by (2. 2). Then it follows from the Gauss equation for the theory
of submanifolds in a real space form that we have

R" (u/\v, w/\z) =R(u, v, w, z) -c((u, w) (v, z) - (u, z)(v, w»)

for any vectors u, v, wand z in M", and hence

K,,(u, v) =R,,(u/\v, u/\v) = (K(u, v) -c) ( 11 u 11 2 11 V 11 2 _ (u, V)2).

By the assumption of the theorem it means K,,(u, v) ;;;0. Thus, by taking
Lemma 2. 1 the associated form R" satisfies R,,;;;O. Hence, the curvature
operator p" at x satisfies p,,;;;c, because its operator p" is given by
(p,,(u*/\v*), w*/\z*)=R,,(u, v, w, z). On the other hand, the assumption
shows that p(M) ;;;c;;;o and there exists a point Xo at which p"o)O. It
implies that theorem 3.4 can he applied. This concludes the proof.

4. Proof of Main theorem

This section is devoted to determining completely the k-th integral
homology group of M. Let M be an n-dimensional compact oriented
Riemannian manifold. For a given function h on M, a point x in M is
called a critical point of h if (dh),,=O and a critical form of h is said
to be non-degenerate if the hessian form of h is non-degenerate. In this
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case the dimension of maximal dimensional subspaces of the tangent space
M., on which the hessian form is negative definite is called the index 01
the critical point x. Set

.eA (h) = the number of critical points of index k of h,
P.. (M) =Min {fiA (h); h is a Morse function},

where a Morse function means a function on M with only non-degenerate
critical points.

For arbitrary field F, let hA (M, F) be the rank of HA (M, F) as a
module over F, which is called a k-th Betti number. If F is a field of
characteristic zero, these modules are vector space over F, so hA(M, F)
is the dimension of the vector space HA(M, F). Since M is compact and
oriented, by Poincare duality theorem

On the other hand, it follows from Morse's inequalities [I3] that one
yields

(4.1)

(4.2)

hA (M, F) ~.eA(M) ~.e.. (h),
A 11
l: (-1) lhA_ 1(M; F) ~l: (- I) IPA_I (h) .
1=1 1=1

Let M be now isometrically immersed in RN under the isometric
immersion I. Let B be the bundle of unit normal spheres over M; SN-l
be a unit sphere of RN centered with origin, and G be a Gauss map of
B into SN-l. A Gauss map is a map which assigns to each normal in B
a unit vector through the origin of RN parallel to the normal. But the
image of .; under the Gauss map may be identified with itself. For any
~ in SN-l a height function h on M is defined by

he (x) = (/(x) , .;)

where (,) means a Euclidean product on RN.
On the other hand, for the isometric immersion I of M into RN and a

normal'; in B, let Ae be the symmetric transformation associated with
the second fundamental form on M induced by I. Then the total curva­
ture .. (M) of M immersed in RN by the isometric immersion I is defined
by
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where dVB means the volume element of Band vol SN-I denotes the
volume of unit shere SN-I in RN. By means of the work of Chem and
Lashof [4, 5J the total curvature t' (M) of M is the volume of the image
of B under the parallelism G. The critical point ~ of the map, that is,
the point where the functional determinant of the map is zero, is exactly
the point where the hessian of the height function hf is of rank <no It
is well known that x is a critical point of h, if and only if ~ is normal
at x, and at a critical point the hessian of hf is the second fundamental
form of M in the direction ~. Expresses somewhat differently, the critical
point ~ of G is the normal to M where the height function h, has
degenerate critical points. By Sard's theorem, their image on SN-I has
measure zero. Thus, for almost all unit normaIs ~ the height function h,
on M, with fixed~, has only non-degenerate critical points, it is the
Morse function.

Choose a normal ~ in B with respect to which the height function h,
is a Morse function. Following Kuiper [9J, the total curvature 'l:k of
index k is defined by

(4.4)

where Pk (~) = Pk (h,). This can be regarded as the average number of
critical points of index k. When the normal t; is replaced by -t;, critical
points of index k change into critical points of index n-k and it means

(4.5)

Now, for the Morse function h it follows from (4.1) and (4.4) that
one yields bk(M, F) ~fik(t;). By averaging this inequality over SN-l, the
following relation is obtained: bk(M, F) ~t'k. By Morse's inecluaIities,

bl(M, F) -bo(M, F) ~fil(t;) -fio(t;).

Again, by integralizing this inequality, the following relation of the Betti
number to the total curvatures is given:

Hence bl (M, F) ~t'I-t'O+1, because M is connected. Since M is compact
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and oriented, the equation (4.5) and the Poincare duality theorem imply

b"-l (M; F) ;;;;;t',l-l -'t'.. + I,

which will give the following inequality:

(4.6) b1(M; F) + ·.. +b"-l(M; F) ;;;;;'t'l + .. ·+'t'''-1-To-'t'.. +2,

for any field F.
Since the image of the bundle B of unit normal spheres over M under

the map G is the same as the set of points ~ in SN-l, each counted a
number of times equal to the number of critical points of the height
function ht on AI, and since the total curvature is the volume of the
image of B, it follows from (4. 3) and (4. 4) that we obtain

t'(M) = 't'o + 1'1 + ... +'t'".

Let B+ be the set of all unit normals ~ such that At is definite and Bo
be the set of all unit normal ~ such that At is not definite. Then, by
the definition the total curvature l' (M) is reduced to

1'(M)= 11.)'N 1 (J IdetAddVB+J IdetAtldVB).vo B+ B.

and the meaning of the hessian of the height function implies

1'1+ .. ·+'t'.-1~ I ~-1 J \detAtldVB.vo B.

Combining together with some results obtained above, we have

(4. 7) 't'l+·"+1'..-l-1'O-t",,~ I~-l (J \detAtldVBvo B.

- J Idet AeldVB).
B+

For the remainder of this section we are concerned with the proof of
Main theorem. Given a point x in AI, the tangent space M,. and the
normal space N,. with respect to the Euclidean scalar product in R.+2 can
be regarded as vector spaces V and W respectively, and as a symmetric
map of V into W the second fundamental form (I,. at x is considered.
For this triple {M,., N", (I,,}, one can select an orthonormal basis {e..+h

~"+2} for W such that «(I,.(u, u), e..)~o for any index Cl and any vector
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u in M", and for this basis

Idet Ax _' I~ Idet A, I for OE[O, n/2J,

J
IdetArldVB~J IdetArldVB,

Bo B+

because an eigenvalue of the transformation A r is non-negative for BE
(0, "'/2). Since there exists a point Xo at which all sectional curvatures
are positive by the assumption, we may suppose that all sectional curva­
tures are positive on a compact Eet C with positive measure, in which
the point Xo is contained, because sectional curvatures are continuous on
M, Accordingly

Thus we have

Idet A x-' I<Idet A, I on C.

J Idet ArIdVB<J Idet ArIdVB,
Bo B+

which is an inequality due to Chen [3]. Combining (4.6) and (4.7)
together with the above inequality, one obtains

(4.8) . b1(M, F) +..,+bn- I (M, F) <2,

for any field F.
First of all, under the hypothesis of Main theorem it will be shown

that M must be simply connected. Suppose that M is not simply connec­
ted. The fundamental group "'1 (M) contains a subgroup isomorphic to Zp
for some prime number p. Let (M, "') be a Riemannian covering of M
corresponding to this subgroup, where'" is the covering projection. It is
easily seen that M is also compact and oriented over Zp, and M satisfies
the same property for the curvature as that of M. Moreover the com­
position fo", of the projection", with the isometric immersion f becomes
again an isometric immersion of M into R"+2. For the Betti number
bk (M, Zp) =dim Hk (M, Zp), the Riemannian covering (M, "') gives bl (M,
Zp) =bn- I (M, Zp) =1. Under this situation (M, f o"" Rn+2) the inequality
(4.8) can be obtained, and these properties contradict each other.. Thus
M is simply connected.
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Now, since Theorem 3.4 means that M is a real homology sphere, we
need only show that M has no torsion. In general, the k-th homology
group H" (M, K) over Z is expressed as

Then the torsion coefficient {t,.'} satisfy the property: t"j It"j+1, by means
of the Poincare duality theorem and the universal coefficient theorem it
is easily seen that t"j=t,,_,,_/ for any j=l, "', c,,=C"_"_l' On the other
hand, in this case the k-th homology group H" (M, R) satisfies H" (M,
R) =REIj· .. EljR (b,,-times). On the contrary, for a prime number p, it
is well known that the universal coefficient theorem implies again

H"(M, Z,) =Z,EIj"·EBZ,(b,,+A,,+..l"_l-times)

where A" is the number of integers j such that p is a divisor of the
integer t,.'.

By coming back to the proof and again by making use of Theorem
2.2, one finds

H"(M,R)=H"-"(M,R)=O for any k=l, "', n-l.

Hence, under this situation, b,,=O for any k=l, "', n-l. Now, suppose
that M contains torsions, that is, H" (M, Z) has the torsion part, then
there exists a prime p such that A,,>O and therefore

b,,(M, Z,) =b"_,, (M, Z,) ~l.

If k is different from n-k, then it contradicts to the inequality (4.8)
accordingly k=n-k. Thus, if M is not a homology sphere over the
integers, it must be even dimensional, say n=2m, and all its torsions
must lie in 1l"'(M, Z). Hence we get t../=t.._m_/=t.._/, because of n=
2m, which implies

torsion Hm (M, Z) = torsionHm-l (M, Z).

Again, by Poincare duality theorem, it contradicts to k=m. Thus we
have H"(M, Z) =0 for k= 1,2, "', n-l. It finishes the proof of Main
theorem.
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