
J. Korean Math. Soc. 23(1986), No. 2, pp. 223-239

SUBMANIFOLDS OF KAEHLERIAN MANIFOLDS

IN-BAE KIM AND ]UNG HWAN KWON

O. Introduction

The research of submanifolds in Kaehlerian manifolds is a wide and
interesting branch of differential geometry, and many geometers have
concerned themselves with the study of structures induced on submanifolds
and geometric properties of CR-submanifolds (see [1, 2, 4, 5, 7, 9, 11, 15,
17J and [18J). In order to investigate these submanifolds from an
integrated view-point, Y. Tashiro and one of the present authors ([15J)
introduced the notion of metric compound structures on a Riemannian
manifold.

In the present paper, we sce that the above mentioned structures or
submanifolds arc characterized by the rank r of a map v and some scalar
fields associated with the rank. The r-plane section on submanifolds
are certain subbundles of normal bundles and related to the rank r. The
main purpose of the present paper is to investigate geometric structures
of a submanifold with concurrent and umbilical r-plane sections in
Kaehlerian manifolds. Conditions for such a submanifold to be conformal
to a warped product, a Euc1idean space or a sphere, and to be isometric
to a sphere or a Sasakian manifold will be obtained.

In Paragraph 1, we shall define some scalar fields associated with the
rank of a map v and characterize the notion of CR-suhmanifolds of
almost Hermitian manifolds in terms of the rank and scalar fields. In
Paragraph 2, we shall discuss r-plane sections on a submanifold M of
Kaehlerian manifolds. After a brief survey of the mean curvature vector
field of M in Paragraph 3, we shall give geometric structures of the
submanifold with a concurrent r-plane section in Paragraph 4. Paragraph
5 will be devoted to research of properties of the suhmanifold M with
an umbilical r-plane section.
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Throughout this paper we assume that manifolds and quantItIes are
differentiable of class COO. Unless otherwise stated, indices run over the
following ranges

A, B, C, D, .•. =1,2, 3, , m,
h, i, j, k, ..• =1,2, ..., n,
p, q, r, s, = n+1, n+2, ..., m,
a, b, c, d, =1, 2, ... , r

respectively and summation convention is applied to repeated indices on
their own ranges.

1. Constant rank of a map v

Let M be an m-dimensional a1ID.ost Hermitian manifold with the
structure (G, J), where G is the almost Hermitian metric tensor and J
the almost complex structure of M. The structure (G, J) satisfies the
relation

J2=-I,

I being the identity tensor field of M, and
(1.1) G(JX, J¥) =G(X, ¥)

for any vector fields X and Y on M.
Let M be an n-dimensional differentiable manifold and t Immersion

of M into M. In terms of local coordinates (xh) of M and (yA) of M,
the immersion i is locally expressed by the parametric equations

yA=yA(xh).

If we put

BtA=OjyA, Ot=%xt,

then Bt= (BtA) are n local vector fields on M :spanning the tangent
space. T:c (M) at every point x of M. A Riemannian metric tensor g

= (gjt) of M is naturally induced from G of M as

gjt=G(Bj , Bt)·

We can choose m-n mutually orthogonal unit normal vector fields Cp=
(CpA) to M, Then the vector fields Bt and Cp span the tangent space
T:c (M) of if at every point x of M and the matrix B defined by

B=(Bj>Cp)

is regular. We have
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V if·h- -.f v hq 1 - qp p,

tBGB= (gji 0)o Oqp'

and Oqp=G(Cq, Cp) form the induced metric of the normal space T.xJ.(M)
of M at each point x of M.

If we put

B-IJB= (f/I
-v/)

Vpi I qp

then the map f= (fih) is an endomorphism of the tangent bundle T
(M) of M and IJ.= (Iqp) is that of the normal bundle T.l(M) of M.
The matrix v= (v/) is a map of T.l (M) into T(M), that is, v/nq
for any normal vector field N=npCp to M are tangent components of
IN. Since components of the almost complex structure J are skew-sym­
metric, so are the components fji=G(JBj , B i) of I and fqp=G(JCq,
Cp) of p.

The transforms of the tangent vectors B i and the normal vectors Cp

of M by J are expressed in the form

(1. 2) JBj=fjhBh+VpjCp,
(1.3) JCq=-vqhBh+fqpCp,

where VPi=vphgih' Applying J to (1. 2) and (1. 3), we have the relations

(1. 4) f/fi h= -Ojh+vpjvi,
(1. 5) I/VPi= -vqjfqp,
(1. 6) frqfqp= -orp+V/Vpi'

where Ojh and 0/ are components of the identity 1. The relation (1. 1)
is equivalent to

(1. 7) gkhfjYjh=gjj-VpjVPi'

Now we assume that the rank of the map v : T.l(M) - T(M) is
equal to a constant r(O~r~min{n, m-n}) almost everywhere on M.
Then there exist linearly independent vector fields V a= V(a)hBh on M
and Na=nCa)qCq normal to M such that

(1. 8) vqh=n(a)q V(a)h.

Moreover we may normalize the vector fields Na such as

G(Nh, Na) =Oha'

If we put

(1. 9) Aha =G (JNh, Na),

then these are r(r-1) /2 scalar fields on M. From the relations (1. 4)
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to (1. 9) , we have

(1.10) f 2X=-X+va(X) Va,
(1.11) fVa=-Aab Vb, vAfX) = AabVb (X) ,
(1. 12) P-Na= J..abNb,
(1.13) g(jX, fY) =g(X, Y) -va(X)va(Y)

for any vector fields X and Y on M, where Va is the associated I-form
of Va• Putting X= Va into (1.10) and using (1. 11), we obtain

(1.14) va(Vb) =Oab-AacAbc.

Therefore the relation (1. 6) is reduced to

(1. 15) (P-) 2N= - N+ (Oab - AacAbc) G (N, Na) Nb

for any vector field N normal to M. Moreover we see that the transforms
(1. 2) and (1. 3) are reduced to

(1.16) JX=fX+va(X) Na
for any vector field X on M, or specially

(1.17) JVa= -AabVb+ (Oab-AacAbc) Nb,

and

(1.18) IN=-G(N, Na) Va+P-N

for any vector field N normal to M
1

or specially

(1.19) Jlfa=- Va+AabNb..

We define the distributions D and Dc of the tangent space TAM) ,
xEM, by

D=span {Vb V2, ••• , Vr },

Dc= {XE Tx(M) Ig(X, Va) =O},

which are orthogonal complementary to one another. Then it is easily
seen from (1. 16) that Dc is a holomorph~c distribution for J and of
even-dimension. Thus· we have

THEOREM 1.1 ([7J). Let M be a submanifold immersed in almost
Hermitian manifolds and v be the map of TJ.(M) into T(M). Then
M is even or odd-dimension according as the rank of v is even or odd.

A. Bejancu ([IJ), D. E. Blair and B. Y. Chen ([2J) have recently
introduced the notion of CR-submanifolds in Hermitian manifolds, which
contains that of holomorphic (or invariant), anti-holomorphic (or anti­
invariant) and generic submanifolds (for instance, see [5], [11], [17J"'" -',' ) ... - . .'" ' , '
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and [18J as to these submanifolds). Since the distribution Dc is holo­
morphic, we can easily verify that M is holomorphic (resp. anti-holo­
morphic or generic) if and only if r=O (resp. r=n or r=m-n).

If O<r<min In, m-n} and the scalar fields Aab vanish identically, then
it follows from (1. 17) that the distribution D is anti-holomorphic ~nd
hence M is a CR-submanifold. Conversely, if M is a CR-submanifold,
we can define scalar fields Aab by Aab=G(JEa, Eb) for orthonormal vector
fields Ea in the anti-holomorphic distribution of M. It is clear that the
scalars Aab vanish identically. Thus we can state

THEOREM 1. 2. Let M be an n-dimensional submanifold in m-dimen
sional Hermitian manifolds. Suppose that the rank of the map v : T1. CM)
---'» T(M) is equal to a constant r and the scalar fields Aab are given by
(1. 9). Then

(1) M is a holomorphic submanifold if and only if r=O,
(2) M is an anti-holomorphic submanifold if and only if r=rz,
(3) M is a generic submanifold if and only if r=m-n.
(4) M is a CR-submanifold if and only if Aab=O.

2. r-plane sections on snbmanifolds

In the sequel, we assume that M is a submanifold immersed in a
Kaehlerian manifold Sf and the rank of the map v: T1.(M) ---'» T(M)
is equal to a constant r almost everywhere on M. Let j7 and f7 be the
operators of covariant differentiation with respect to the metric G on M
and to the induced metric g on M respectively. Then the Gauss and
Weingarten formulas are given by

(2.1) i7xY= 17xY+h (X, Y),
(2.2) i7xN=-ANX+17x1.N

for any vector fields X and Y on M and N normal to M, where h is
the second fundamental form, f71. the linear connection induced in the
normal bundle Tl. (M), called the normal connection, and AN the sec.ond
fundamental tensor with respect to N. The second fundamental form h
and tensor AN are related by

(2.3) G(h(X, Y), N) =g(ANX, Y).

Differentiating (1. 16) covariantly along M and taking account of (2.1),
(2. 2) and (2. 3), we obtain

f17yX-g(AaX, Y) Va+va(l7yX)Na+f1.h(X, Y)
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= (Vyf) X+fVyX-va(X) AaY+h(fX, Y) +Y(va(X»Na+va(X)Vy.lNa,

where we have put AaX=ANaX. Taking tangential and normal com­
ponents of the equation, we have

(2.4) (Vy f)X=va(X) AaY-g(AaX, Y) Va,
(2.5) f.lh(X, Y) =h(fX, Y) + (VyVa) (X) Na+va(X) Vy.lNa.

Since, for example, the relation

G(f.lh(X, Y),Na)=-G(h(X, Y),j.lNa)=-).abg(AbX, Y)

is satisfied by (1. 12), it follows from (2. 5) that

(VyVa) (X) =-Aabg(AbX, Y) +g(X,jAaY) -Lab(Y)Vb(X)

or equivalently

(2.6) VXVa=-).abAbX+fAaX-Lab(X) Vb,
where Lab(X) =G(Na, VX.lNb) is a scalar field on M and skew-sysmmetric
in a and b. Similarly, differentiating (1. 18) covariantly and taking
tangential and normal components, we have

(2.7) fANX-Af.lNX-G(N, Vx.lNa) Va
=G(N, Na) (fAaX-).abAbX-Lab(X) Vb),

(2.8) (Vx.lf.l)N=G(N, Na)h(X, Va) -Va(ANX) Na·

It follows from (1. 9), (1. 19) and (2. 2) that

(2.9) XAab=Va(AbX) -Vb (AaX) +AacLcb (X) -).bcLca(X),

The mean curvature vector field H of M in if is defined by

H= (l/n) (trace Ap)Cp.

For a unit normal vector field N to M, 1:'= (l/n) trace AN is called the
mean curvature belonging to N. If the mean curvature vector field H of
M vanishes identically, then M is said to be minimal. A normal vector
field N is said to be an umbilical (resp. a geodesic) section on M, or
M is called umbilical (resp. geodesic) with respect to" N, if ANX= 'L'X
(resp. ANX=O) for any vector field X on M. If M is umbilical (resp.
geodesic) with respect to all unit normal vector fields to M, then M is
said to be totally umbilical (resp. geodesic). If there exists a scalar field
1:' on M such that AHX='L"X for any vector field X on M, then M is
called a pseudo-umbilical submanifold. A normal vector field N or the
endomorphism f.l of the normal bundle T.l (M) is said to be parallel in
the normal bundle if Vx.lN=O or Vx.lf.l=O for any vector field X on M.

Now we define the subbundle D.l of the normal bundle T.l(M) by
D.l= span {Nh N2, "" Nr }
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and denote by D/· the orthogonal complement of DJ.. If each normal
vector field Na in DJ. is an umbilical section on M and all of them are
not geodesic sections on M, then the subbundle DJ. is called an umbilical
r-plane section on M. If each N a is parallel in the normal bundle, then
DJ. is called a parallel r-plane section on M, If DJ. is an umbilical as
well as a parallel r-plane section on M, then we call it a concurrent
r-plane section on M. The following lemma is easily seen and justifies
the preceding terminologies of r-plane sections.

LEMMA 2. 1. Let N be any vector field in the subbundle DJ..
(1) If all the orthonormal vector fields in DJ. are umbilical sections

on M, then so is N.
(2) If all the orthonormal vector fields in DJ. are parallel in the normal

bundle, then J7x J.N belongs to DJ..
If the subbundle DJ. of the normal bundle is an umbilical (resp. a

parallel or concurrent) r-plane section on M, then M is said to be a
submanifold with an umbilical (resp. a parallel or a concurrent) r-plane

section.

3. Mean curvature vector field

Let M be a submanifold immersed in a Kaehlerian manifold At such
that the rank of the map v: TJ.(M) -:> T(M) is equal to a constant
r almost everywhere on M.

If we substitute (2.6) into (2.5), then we obtain

ph(X, Y) -h(fX, Y) = (g(fAaY, X) -Aabg(AbX, Y)
- Lab(Y) Vb(X» Na+va(X) J7 y J.Na

for any vector fields X and Y on M. Let El' E z, ••• , En be an ortho­
normal basis for M. Then, by taking account of

heX, Y) =hp(X, Y)Cp=g(ApX, Y)Cp,

the skew-symmetrization of f and symmetrization of A, we get

g(ApE;, E;)PCp= - (Aabg(AbE;, E;) +Lab(E;)Vb(E;»Na
+va(E;)J7E/Na

or, summing over i,

(3.1)

where we have put

(3.2)
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Applying fi to (3.1) and usiiig or (1.12)' and (1.15), we have

(3~ 3) H=iaNa-P-HJ..

It follows from (3.2) that HJ. is a vector fi.eId in Del.. Thus we have
PROPOSITION i i. Let M be a submanifold in Kaehlerian manifolds

such that the rank of the map v: 1'1.CM) ---;;; 1'(M) is equal to a cons-. .
ta!U r almost everywhere on M. Then the mean curvature vector field
H of M is given by

H=7:aNa-fJ.HJ.,

where HJ. is a vector field in the subbundle Del..

Now we assume that the endomorphism fJ. of the normal bundle is
pai-afiel in the nornial bundle. Then it is immediate from (2.8) that

va(ANX) Na=G(N, Na)h(X, Vd)

for any vector field X on M and normal vector field N to M~ Putting
N fJ.HJ. Of HJ. into this relation, we get

(3.4) va(AfJ.HJ.X) =0 or va(AHJ.X) =0.

On the other hand, the relation (2. 7) is reduced to

(3.5) fAfJ.HJ.X+AHJ.X=-G(fJ.fTxJ.HJ.,Na) Va.

Since AfJ.JiJ.X arid AJiJ..i are tangent vector fields in Dc by (3.4),
then so is jA.rJ.HJ:.X. Combining this result with (3.5), we find

G(PfTxJ.HJ., N a) =0

for any index a, which means that fJ.fTxJ.Hl. is a normal vector field
in the subburidle D/-. Therefore it follows' fromfl.Del.cDe.L and (1.15)
that fTxl.Hl. belongs to D/. Moreover the relation (3.5) is reduced to
Af.LH.LX fAH.LX or equivalently

g(AjiiJ.L)f, "f)=g(!AH.LX, Y)

for any veCtor fields X and Y on M~ For an orthonormai ~basis (Ei )

for M, if we put X Y="E, and sUm over i, we get 1)"""':'0, where

1)=- (l/n)G(Ajl.Ii.LEi , E i )

and it is the mean curvature restricted to the subbundle De.L. Since it
is easily seen that I)=G(H1.,H-1.)=IHl.t 2, then we can find Hi=O
identically. Thus we can state

PROPOSITION 3.2. Let ivI be a !submaitifold in Kaehlerian manifdlds
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such that the rank of the map v : T'- (M) - T(M) is equal to a cons·
tant r almost everywhere on M. If the endomorphism P- is parallel in
the normal bundle, then the mean curvature vector field H of M is given
by

(3.6) H='CaNa.

If the subbundle DJ. of the normal bundle TJ. (M) is a parallel
r-plane section on M, then we have 17xJ.Na=O and Lab(X)Nb=O for
any vector field X on M and index a. Thus the following is immediate
from Theorem 3. 1.

COROLLARY 3.3. Let M be a submanifold with a parallel r-plane section
in Kaehlerian manifolds. Then the mean curvature vector field H of M
is given by (3. 6).

4. Concurrent r-plane section

In this Paragraph, we consider a submanifold M with a concurrent
r-plane section DJ. in a Kaehlerian manifold M. Then, for any vector
fields NaEDJ. and X on M, we have

AaX='CaX, 17xJ.Na=O,

where 'Ca is the mean curvature belonging to N a. Therefore the equations
(2.4), (2.6) and (2. 9) are reduced to

(4.1) (17Yf)X='Ca(va(X)Y-g(X, Y) Va),
(4.2) f7x Va='CbAbaX+'CafX,
(4.3) XAab='CbVa(X) -'CaVb(X),

By Corollary 3. 3, the mean curvature vector field 1I of M IS given
by (3. 6) . Therefore it is easily seen that

(4.4) A H X=!HI2X,

where IHI is the mean curvature of M. Thus we have

THEOREM 4.1. J.,et M be a submanifold with a concurrent r-plane
section in Kaehlerian manifolds. Then M is a pseudo-umbilical submanifold.

Now we shall prove the following lemma.

LEMMA 4.2. The gradient vector field of each mean curvature 'Ca
belonging to N a is represented by a linear combination of the vector fields
in the distribution D of T(M) only.
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Proof. By a straightforward computation, we obtain

VyVx Va= - (Z"bYAtib+AabYZ"b)X+ (YZ"a)fX+Z"aZ"b(vb(X) Y-g(X, Y) Vb)
- AabZ"liVyX+Z"afVyX

from the equations (4.1) and (4.2), which implies that

R(X, Y) Va= (Z"bYAab+AabYZ'b+Z"aZ"bVb(Y))X- (YZ"a)fX
- (Z"oX"Aab+AabXZ"b+Z"aZ'bVb(X)) Y+ (XZ"a)fY,

where R is the curvature tensor of M. Using the first Bianchi identity,
we get

(4.5) (XZ'a)g(fY, Z) + (YZ"a)g(fZ, X) + (ZZ"a)g( fX, Y) =0
for any vector fields X, Y and Z on M. In terms of an orthonormal basis
(El) for M, if we put Y=E; and Z fE; into (4.5) and take account
of (1.10) and (1.13), we have

(n-r-2+AbcAbc)XZ"a+2(VbZ"a)Vb(X) =0.
Thus the above equation completes the proof. .

By virtue of Lemma 4. 2, we can consider the case where there exists
cl pair of mean curvature Z"a and Z"b belonging to Na and Nb in DJ.. such
that dia=(}Vb and dZ"b=(}Va for a scalar field () on M. Under the con­
sideration, we shall prove

LEMMA 4.3. If there is a pair of mean curvatures belonging to Na

and Nb sUch that their gradient vector fields are the same scalar multiple
of Vb and Va in D respectively, then the equation

(4.6) VxdA.ab= - (iaZ"cAcb-Z"bt'cA.ca) X
is satisfied for any vector field X on M.

Proof. Differentiating (4.3) covaiiantly along M and usmg (4.2),
we obtain

YXA.ab= (Yt'b)Va(X) - (YZ"a) Vb (X) - (t'aZ'cAcb-t'bt'cAca)g(X, Y)
+ (VyX)A.ab

for any vector fields X and Y on M, or equivalently

(4.7) J7xdA.ab= (XZ"b) Va- (XZ"a) Vb- (Z"aZ"cA.cb-Z"bZ"cA.ca)X'

Since there exist t'a and 'rb such that X'ra=()Vb and X'rb=(}Va by
hypothesis, the equation (4.7) is reduced to (4.6).

On a Riemannian manifold, a scalar field A satisfying

(4.8) J7xdA.=ifJX

for a scalar field ifJ and any vector field X is said to be concircular.
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The following Theorem A is well-known.

THEOREM A ([13, 14J). If an n(?:.2)-dimensional complete Riemannian
manifold M admits a concircular scalar field satisfying (4.8), then M is
conformal to one of

(1) a warped product IX M of an open interval I of a straight line
and an (n-1)-dimensional complete Riemannian manifold M,

(2) a Euclidean space,
(3) an ordinary sphere.

The scalar field Aab on our submanifold M is a concircular one. Thus,
combining Lemma 4. 3 and Theorem A, we state

THEOREM 4.4. Let M be an n-dimensional complete submanifold with
a concurrent r(?:.2)-plane section DJ. in Kaehlerian manifolds. If there
is a pair of mean curvatures belonging to Na and Nb in DJ. such that
their gradient vector fields are the same scalar multiple of Vb and Va

in the distribution D respectively, then M is conformal to one of
(1) a warped product IXM of an open interval Iof a straight line

and an (n-1)-dimensional complete Riemannian manifold M,
(2) a Euclidean space,
(3) an ordinary sphere.

Finally we suppose that the mean curvature vector field H of M is
parallel in the normal bundle. Then we see that each mean curvature
7:a belonging to Na is a constant. Moreover, applying 7:b to the equation
(4. 7) and summing over b, we have

(4. 9) VXd7:~a=-IHI27:bA.t,aX

for any vector field X on M, which shows that 7:b~a is a special
concircular scalar field on M. As for a special concircular scalar field on
a Riemannian manifold, the following Theorem B is well-known and
due to Y. Tashiro, M. Obata and S. Tanno.

THEOREM B ([8,12, 13J). Let M be an n(';;:::.2)-dimensional complete,
connected and simply connected Riemannian manifold. Then M is isometric
to an ordinary sphere if and only if M admits a non-trivial solution A
of either the equation

f7xdA=-kAX,

or



234 In-Bae Kim and Jung Hwan Kwon

(4.10) p'P'w(X; Y;Z) +k2 (2w(Z)g(X, Y)
+w(Y)g(Z, X) +w(X)g(Y, Z» =0

for a positive constant k and any vector fields X, Y and Z on M, where
w is a I-form on M defined by

(4.11) w=dA.

The existence of non-trivial solutions 'Z"bAba of the equation (4.9) IS

supported by the following Lemma.

LEMMA 4. 5. Suppose that the mean curvature vector field H of M is
parallel in the normal bundle. If there are two non-zero mean curvatures
'Z"a and 'Z"b belonging to Na and Nb in the r-plane section DJ.., then the
scalar fields 'Z"cAca and 'Z"cAcb are not constants. Moreover, if there is at
least one non-zero constant mean curvature belonging to a unit normal
vector field in DJ.., there is a non-constant scalar field 'Z"cAca.

Proof. First of all, we notice that 'Z"cAca=G(JH, Na). Assume that
'Ca and 'Z"b are non-zero, but the scalar field 'Z"cAca is a constant. Then
we have

G(Jf7xH, Na) +G(JH, f7XNa) = -G(JAHX, Na) -G(JH, AaX) =0,

which implies, by Theorem 3. 1, that

IHI 2 Va+'Z"a'Z"c Vc=O.
Since Va's are linearly independent, we obtain

IH12= L;'Z"a2 and 'Z"a'Z"b='Z"a'Z"c=O

for c=Fa, b, which shows that 'Z"b=O. This contradicts to the assumption
and hence the scalar field 'Z"cAca is not constant.

To prove the remaining part of the lemma, it suffices to consider the
case where 'Z"l is non-zero constant and 'Z"a=O for a=Fl. Since the relation
XA1b='Z"bVl (X) -'Z"lVb(X) is satisfied by (4.3), it is easily seen that

X'Z"lAlb=-!H!2Vb (X),

which implies that the scalar fields 'Z"lAlb is not a constant.

Combining Theorem B with Lemma 4. 5, we can state

THEOREM 4. 6. Let M be a complete, connected and simply connected
submanifold with a concurrent r(?:.l)-plane section DJ. in Kaehlerian

manifolds. If the mean curvature vector field H of M is parallel in the
r-plane section DJ-, then M is isometric to an ordinary sphere.
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By an e.7:trinsic sphere we mean a totally umbilical submanifold with
non-zero parallel mean curvature vector field (see [3J or [16J). The
following is immediate from Theorem 4.6 and generalization of a theorem
due to B. Y. Chen ([3J).

COROLLARY 4. 7. A complete, connected and simply connected extrinsic
sphere with a parallel r-plane section DI in Kaehlerian manifolds is

isometric to an ordinary sphere.

5. Umbilical r-plane section

In this Paragraph, we shall consider a submanifold M with an
umbilical r-plane section D 1 in Kaehlerian manifolds. Then we have
AaX='Z"aX for any vector fields NaEDI and X on M. The equations
(2.4), (2.6), (2.8) and (2.9) are reduced to

(5.1) (f7yf)X='Z"ava(X) Y-'Z"ag(X, Y) Va,

(5. 2) f7x Va= 'Z"bA.baX+raf X-Lab (X) Vb,
(5.3) (f7x 1fl)Na=h(X, Va) -'Z"aVb(X) Vb.

(5.4) XA.ab=rbVa(X) -raVb(X) -A.acLbc(X) +A.bcLac(X)

for any vector fields X and Y on M. If we define a vector field V on
M by

(5.5) V=raVa

and denote the associated I-form of V by v, then it follows from (5. 2)
that

(5.6) f7x V= (X'Z"a-rbLba(X» Va+'Z"a'i:'afX.

We shall prove the following lemmas.

LEMMA 5.1. If the mean curvature vector field H of M is parallel
in the normal bundle and belongs to the r-plane section DJ-, then each
mean curvature 'Z"a belonging to N a is a constant and each scalar field

'Z"bLba (X) vanishes identically on M. Moreover the vector field V defined
by (5. 5) is a Killing one.

Proof. Since HEDl and f7x1H=O, then it is easily seen from Theorem
3.1 that H='Z"aNa and 'Z"a is a constant for each a. Differentiating this
relation covariantly, we also find 'Z"bLba (X) =0 for each a. Therefore
the equation (5.6) is reduced to

(5.7) f7x V= IHI2jX,
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which implies that V is a Killing vector field on M.

LEMMA 5. 2. Under the assumptions of Lemma 5. 1, the Killing vector
field V on M satisfies the equation

(5.8) IHI2(p'yP'X V-P'p'yxV) =v(X) Y- g(X, Y) V

or

(5.9) p'P'm(X; Y;Z) +IHI2(2m(Z) g(X, Y)
+m(Y)g(Z, X) +m(X)g(Y, Z)) =0

for any vector fields X, Y and Z on M, where m is a I-form given by

(5.10) m=dl V12.

Proof. Differentiating (5. 7) covariantly along M and taking account
of (5. 1), we obtain

l7yP'x V= IHI2(v(X)Y-g(X, Y) +fl7yX).

Therefore the equation (5. 8) follows from this equation and (5. 7).
If the length I VI of the Killing vector field V is not a constant,

then the I-form m given by (5.10) is well-defined. It follows from
the I-form m and the equation (5. 7) that

(5.11) m(X)==2g(P'xV, V)=2IHI2v (fX).

Using the equations (5. 1), (5. 7) and (5. 11), we have

(l7ym) (X) =2IHI2(v(X)v(Y) -[ VI2g (X, Y) + IHI2g (fX, fY))

for any vector fields X and Y on M. By a simple computation, we can
verify the equation (5. 9).

The following Theorem C is well-known and due to M. Okumura.

THEOREM C ([9]). If a Riemannian manifold M admits a Killing
vector field V of constant length satisfying the equation (5.8), then M
is homothetic to a Sasakian manifold.

We now suppose that the submanifold M is complete, connected and
simply connected. If the length IVI of the Killing vector field V is
non-trivial, that is, I VI is not a constant, then M is isometric to an
ordinary sphere by virtUe of Lemma 5. 2 and Theorem B stated in
Paragraph 4. If the length IVI is a constant, then Theorem C together
with Lemma 5. 2 show that M is homothetic to a Sasakian manifold
(as to a Sasakian manifold, see [9J or [10J). Sun:iIning up these results
and Lemma 5.1, we can~state
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THEOREM 5.3. Let M be a complete, connected and simply connected
submanifold with an umbilical r-plane section in Kaehlerian manifolds.
If the mean curvature vector field of M is parallel in the normal bundle
and belongs to the r-plane section, then M is one of the followings:

(1) M is isometric to an ordinary sphere;
(2) M is komotketic to a Sasakian manifold.

Finally we suppO$e that both the mean curvature vector field H of
M and the endomorphism P- : TJ. (M) - TJ. (M) are parallel in the
normal bundle. Then it is easily verified from Theorem 3. 2 that the
assumptions of Lemma 5.1 are satisfied. Therefore, if the length IVI
of the Killing vector field V is not a constant, M is isometric to an
ordinary sphere by Theorem 5. 1. In the case where 1VI is a constant,
it follows from (5. 2) and (5. 7) that

(5.12) v(fX)=O

or, from (1. 11) and (5. 12),

(5.13) fV=O

and 'tbAba = 0 for all a.
If we apply 7:'a to the equation (5.4) and sum over a, then we find

7:'bV(X) = \HI2Vb (X),

which implies that all the mean curvatures belonging to Na's except one
vanish identically, say 7:'1*0. Therefore we have V=7:'1 VI and lHl =7:'1.

Since fJ. is parallel in the normal bundle, it follows from (5.3) that

heX, VI) ='rlVb(X) Nb

or, applying Na to this relation,

7:'aVl(X) =7:'IVa(X) ,

which implies that Va (a *1) must be vanished, that is, M must be a
CR-submanifold. We may assume that the constant 7:'1 ~s equal to 1.
Hence V is a unit vector field on M, that is,

(5.14) v(V)=1.

The relations (1. 10) and (1. 13) are reduced to

(5.15) j2X=-X+v(X) V,
(5.16) g(fX,jY) =g(X, Y) -v(X)v(Y)

for any vector fields X and Y on M. It follows from (5. 7) that

(5.17) Vx V=fX,
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and from (5. 1) that

(5.18) (P'Yf)X=v(X)Y-g(X, Y) V.

The equations (5. 12) to (5. 18) show that M is just a Sasakian manifold.
Thus we can state

THEOREM 5. 4. Let M be a complete, connected and simply connected
submanifold with an umbilical r-plane section immersed in Kaehierian
manifolds. If both the mean curvature vector field of M and the endomor­
phism p. are parallel in the normal bundle, then M is one of the followings:

(1) M is isometric to an ordinary sphere;
(2) M is a Sasakian manifold.
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