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ON CERTAIN LIPSCHITZIAN INVOLUTIONS
IN BANACH SPACES

SEHIE PARK AND SANGSUK Ym

1. Introduction
In [3J, [4J, K. Goebel and E. Zlotkiewicz investigated conditions

under which lipschitzian involutions or lipschitzian maps with nonex­
pansive square of a closed bounded convex subset X of a Banach space
B have fixed points. A map T : X ---'" X is called an involution if T2=
I, where I denotes the identity map, and a k-lipschitzian if 11 T:e- Tyll
skll:e-YII holds for all :e, yEX. A 1-lipschitzian map is said to be
nonexpansive.

In the present paper, the main results of [3J, [4J are so strengthened
that some information concerning the geometric estimations of fixed points
are given.

Our tool in this paper is the following in [7J, which is a consequence
of the well-known variational principle of Ekeland [lJ, [2J for approx­
imate solutions of minimization problems.

THEOREM O. Let V be a complete metric space and f: V ---'" V be a
map such that there exists an LE[O,l) satisfying

d(f:e, f 2:e) sLd(x, f:e) for any teE V.
If F(:e) =d(:e,fx) on V is I. s. c., then

(1) limf#:e=p e:eists for any teE V,
L B

d{f#:e,p) S 1-L d(:e,fx) ,

and p is a fi:eed point of f, and

(2) for any uE V and e>O satisfying
F(u) S (l-L)e,

f has a fi:eed point in B(u, e). Further, if f is a quasi-lipschitzian with
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[3J.

constant k, then either u is a fixed point of f or f has a fixed point in
B(u,e)\B(u,s) where s=d(u,fu)(l+k)-l.

Note that B(u, e) denotes the closed ball with center u and radius e,
and B(u, s) the corresponding open ball.

A map f: V -- V is called a quasi-lipschitzian with constant k if
IIfx-fpll :::;;kllx-plI holds for all xE V and for every fixed point p of
f.

2. Main Results
The modulus of convexity of the space B is the function 0: [0, 2J
~ [0, IJ defined by the following formula

a(e) =inf {l-lIx~YII : x, yEB(O,l), IIx-yll~s}.

Note that the function o(e) is nonincreasing and convex.
Moreover, for any x, yEB(O, r) and any a such that 0:::;;a:::;;2r and

lIx-yll~a, we have

lIx~YII:::;;(l-o(;»r

Now we have our first result:

THEOREM 1. Let X be a closed convex subset of a Banach space Band
T: X~ X a k-lipschitzian involution. If L: =k(1-o(2Ik» /2<1,

then for any uEX and e>O satisfying

lIu- Tull:::;; (1-L)e,

either u is a fixed point of T or there is a fixed point of Tin B(u, si
2) nX\B(u, s) where s=lIu- Tull (k+3)-1.

Proof. For any xEX,

liT (x-t;Tx) -xlI=IIT(x-t;Tx)- T2x ll

:::;; kll x+
2
Tx Txll

k
=Zllx-Txll

liT (x+
2
Tx )-Tx lI :::;;kll x+

2
Tx xII

k
=Zllx-Txll •
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Thus, by the property of modulus of convexity, we have

11 x+
2
Tx T (x+

2
Tx) 1I ~ (1- o(i)) ~lIx- Txll.

Now if we put G= ~ (1+ T), then

llGx-G2xll =ll Gx+TGx Gxll
2

= ~ llTGx-Gxl\

~ ~ (l-o(i)) ~ IIx-Txll

=(l-o(i)) ~I\x-Gxl\
=Lllx-Gxll.

Therefore, by Theorem 0(1), lim G"x=p exists for XEX, and pEFix
G=FixT, the fixed point set. Since T is a k-lipschitzian, G is a (k+
1) /2-lipschitzian and quasi-lipschitzian. Therefore, by Theorem 0 (2),
for any uEX with lIu-Tull:5:(1-L)e, we have lIu-Gull=lIu-Tull/2
~ (1-L)e/2. Hence, u is a fixed point of G or there is a fixed point
of G in Jj(u, e/2) nX\B(u, s) where s=lIu-Gull/ (l + (k+l) /2) =lIu­
Tull/ (k+3). This completes our proof.

CoROLLARY 1. [3, Theorem 1J. Let X be a closed convex subset of a
Banach space Band T: X~ X a k-lipschitzian involution such that
k(1-o(2/k))/2<1. Then T has at least one fixed point.

CoROLLARY 2. Let X be a closed convex subset of a Banach space B
and T:X~ X a k-lipschitzian involution. If 0~k<2, then/or any
uEX and e>O satisfying

lIu- Tull ~ (1- ~)e

the conclusion of Theorem 1 holds.

Proof. Let L=k/2 and G= ~ (1+T). Then L<l, and

IIGx-G2xll ~ (1-0( i)) ~ IIx-Gxll

:5:fIlX-Gxll

=Ll\x-Gxll.
Thus, by Theorem 1, we have the same conclusion to Theorem 1.
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Corollary 2 improves [4, Theorem 1J.

The characteristic of convexity of the space B is the number eo=SUp
{e : o(e) =O}.

Some of Banach spaces can be fully characterized by the number eo
and the modulus of convexity. The following facts are known [3J

(1) If eo<l, then B has normal structure,
(2) B is uniformly non-square iff eo<2, and
(3) B is strictly convex iff 0 (2) = 1.

THEOREM 2. Let X be a closed convex bounded subset of a Banach space
B with eo<l and 0 (2) = 1, and T: X~ X a k-lipschitzian map such
that T2 is nonexpansive. If L : =k(1-0 (2/k)) /2<1, then the conclusion
of Theorem 1 holds.

Proof. Since eo<l, B is uniformly non-square and in view of [5J,
it is reflexive, and moreover it has normal structure. Since T2 is
nonexpansive, by Kirk's fixed point theorem [6J, the set C*= {x: T2X
=x} is nonempty. 0(2) =1 means the strict convexity of B and implies
that C* is convex. Obviously we have T(C*) =C* and T2=I on C*.
Hence, using Corollary 1 for the restriction of T on C*, we can apply
Theorem 1-

Theorem 2 improves [3, Theorem 2J.

THEOREM 3. Let X be a closed convex subset of a uniform!.y conve.'C
Banach space Band T: X~ X a k--lipschitzian involution. If L : =
kO-1(1-1/k)/4<1, then for an.y uEX and e>O satisfying lIu-Tull<
(l-L)e, either u is a fixed point of Tor T has a fixed point in lieu,
e/2) nX\B(u,s) where s=lIu-Tull(k+3)-1.

Proof. Let G=(I+T)/2 and let for XEX, y=Gx and z=Ty.
Then

IIz-xll=IITy-xll=IITy-T2x ll
~klly- Txll =kIlGx- Txll

=kll x~Tx Txll = ~ IIx- Txll

11 (2y-z) -xll=1I2Gx- Ty-xll=llx+Tx- Ty-xll
= 11 Tx- Tyll ~kllx-yll =kllx-Gxll

. =kllx-x~Tx 11 = ~ IIx- Txll
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and

11 z+ (2y-z) -xll=lly-xll=lIx-Gxll
2

= ~ Ilx- Txll.

Thus, by the property of modulus of convexity, we have

Ilz- (2y-z) 11 ~{-0-1(1- i) IIx- Txll.

But since

221

and
we have

Ilz- (2y-z) 11=21Iy-zll=2I1Gx- Tyll
=41IGx-G2xll

Ilx- Txll=211.7;-Gxll,

41IG.7;-G2xll ~kO-l(1- i) 11.7;- T;rll

1. e. , IIGx-G2xll ~ : 0- 1 (1- i) 11.7;-G.7;1I
=LII.7;-G.7;II,

and Ilx-Gxll~ (1-L).s/2.
Thus G satisfies all the hypothesis of Theorem 0, and we conclude our
result.

Theorem 3 strengthens [4, Theorem 2].

THEOREM 4. Let X be a closed bounded conve.7; subset of a uniformly
convex Banach space B, and T: X~ X a k-lipschitzian map such
that T2 is nonexpansive. If L: =kQ-l(1-1/k)/4<1, then the conclusion
of Theorem 3 holds.

Proof. Since every uniformly convex Banach space is strictly convex,
reflexive and has normal structure, by Theorem 2 and Theorem 3, we
obtain our result.

Theorem 4 strengthens [4, Theorem 3].
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