ON FINITE SIMPLE GROUPS —THE UNITARY GROUPS $U_4(q)$

SEUNG AHN PARK

1. Introduction

Any finite simple group of Lie type has a (B, N)-pair, and such a simple group can be studied by using its (B, N)-pair structure. For example, the projective special unitary group $U_n(q)$, where q is a prime power, is isomorphic to the twisted Chevalley group ${}^2A_{n-1}(q)$ of type A_{n-1} , and so this group can be studied in this manner.

In this paper we study the simple group $U_4(q)$ by using its (B, N)-pair structure. As a matter of fact, this study will be continued to the study on $U_n(q)$. We will explicitly determine elements of ${}^2A_3(q)$ and give a specific isomorphism of $U_4(q)$ onto ${}^2A_3(q)$. Using this information, we will study some special subgroups contained in maximal parabolic subgroups of $U_4(q)$ and find all elements of order p, where $q=p^e$ and p is a prime. We will also explicitly determine the structure of the centralizers of involutions in $U_4(q)$. Note that

$$\mid U_4(q) \mid = \frac{1}{d} q^6 (q^2 - 1) (q^3 + 1) (q^4 - 1),$$

where d = (4, q+1), and that

$$\begin{array}{c} d=1 \iff q=2^{\varrho} \text{ and } p=2; \\ d=2 \iff q\equiv 1 \pmod 4; \quad d=4 \iff q\equiv -1 \pmod 4. \end{array}$$

The determination of involutions and their centralizers in Chevalley groups over a finite field of characteristic 2 has been studied in [1]. And a characterization of $U_4(q)$, where q is odd, has been done in [4] by using matrix presentation. In this paper we treat $U_4(q)$ as the twisted Chevalley group ${}^2A_3(q)$ and every element of subgroups are explicitly expressed. This paper contains some results in the author's paper [3].

Received May 14, 1986.

This research has been supported by the Ministry of Education.

This paper is organized as follows. In section 2 detailed description for the (B, N)-pair structure of ${}^2A_3(q)$ is given. An explicit isomorphism of $U_4(q)$ onto ${}^2A_3(q)$ is also given. In section 3 we prove properties of some special subgroups which are contained in maximal parabolic subgroups of $U_4(q)$. And elements of order p in $U_4(q)$ is also determined. In section 4 and section 5 the structure of the centralizers of involutions in $U_4(q)$ are explicitly determined, where $q\equiv 1 \pmod{4}$ or $q\equiv -1 \pmod{4}$.

The notation and terminology in this paper are standard. They are taken from [6] for the general finite groups and from [2] for the Chevalley groups.

2. The groups $U_4(q)$

Let F be a finite field with q^2 elements, where $q=p^e$ and p is a prime. For each element $\alpha \in F$ define $\overline{\alpha}$ by $\overline{\alpha}=\alpha^q$. Then the map $\sigma: F \longrightarrow F$, $\sigma(\alpha)=\overline{\alpha}$, is an automorphism of order 2, and $F_0=\{\alpha\in F | \alpha=\overline{\alpha}\}$ is a subfield of F with q elements.

Let f be a non-degenerate Hermitian product on the four-dimensional vector space F^4 defined by

$$f((\alpha_1, \alpha_2, \alpha_3, \alpha_4), (\beta_1, \beta_2, \beta_3, \beta_4)) = \alpha_1\beta_4 - \alpha_2\beta_3 + \alpha_3\beta_2 - \alpha_4\beta_1,$$

and let $J \in Mat_4(F)$ be the matrix associated with f. Then the general unitary group $GU_4(q)$ may be identified with the set of all matrices $(\alpha_{ij}) \in Mat_4(F)$ such that $(\alpha_{ij})^*J(\alpha_{ij})=J$, where $(\alpha_{ij})^*=(\bar{\alpha}_{ji})$. Thus

$$SU_4(q) = \{A \in GU_4(q) \mid \det A = 1\}, \quad U_4(q) = PSU_4(q) = SU_4(q)/Z,$$

where $Z = \{ \text{diag} \{\lambda, \lambda, \lambda, \lambda\} \mid \lambda \bar{\lambda} = 1, \lambda^4 = 1 \}$, and Z is cyclic of order d = (4, q+1).

The group $U_4(q)$ is isomorphic to the twisted Chevalley group ${}^2A_3(q)$ of type A_3 . We will use the same notation as in [2] to define elements of ${}^2A_3(q)$. Let Φ be the set of roots of the simple Lie algebra $\mathcal L$ of type A_3 over the complex number field, and let $\Pi = \{a, b, c\}$ be a fundamental system in Φ . The positive system of roots in Φ is then $\Phi^+ = \{a, b, c, a+b, b+c, a+b+c\}$. Let $\mathcal E = \{h_r, r \in \Pi : e_r, r \in \Phi\}$ be a standard Chevalley basis for $\mathcal L$. For $r, s \in \Phi$ we define $N_{r,s}$ by $[e_r, e_s] = N_{r,s}e_{r+s}$. Then $N_{r,s}$ is either ± 1 or 0 according as r+s is a root or not. Let $x_r(\alpha)$, $h_r(\lambda)$, $h(\chi)$ and n_r be elements of the Chevalley group

 $A_3(q^2)$ as defined in [2], where $r \in \Phi^+$ and α , $\lambda \in F$. The elements $h_r(\lambda)$ and n_r act on \mathcal{E} as follows:

$$(*) \qquad h_r(\lambda) \cdot h_s = h_s, \qquad n_r \cdot h_s = h_{w_r}(s); \qquad s \in \prod, \\ h_r(\lambda) \cdot e_s = \lambda^{A_{rs}} e_s, \qquad n_r \cdot e_s = \eta_{r,s} e_{w_r(s)}, \qquad s \in \emptyset,$$

where w_r is the reflection determined by r and $A_{rs} = \frac{2(r,s)}{(r,r)}$. The signs of the structure constants $N_{r,s}$ may be chosen arbitrarily for the pairs (a,b), (b,c), (a,b+c), and then the structure constants for all pairs are uniquely determined. We will set

$$(**) N_{a,b}=1, N_{b,c}=-1, N_{a,b+c}=-1.$$

Then it is easy to prove the following three propositions.

(2.1) We have
$$N_{c,b} = N_{b+c,a} = N_{a+b,c} = 1$$
, $N_{b,a} = N_{c,a+b} = -1$.
If $r, s, r+s \in \Phi^+$, then $\eta_{r,s} = N_{r,s}$ and $\eta_{r,r} = \eta_{r,r-r} = -1$.

We have

$$\eta_{a,c} = \eta_{a,a+b+c} = \eta_{b,a+b} = \eta_{b,b+c} = \eta_{b,a+b+c} = 1,$$
 $\eta_{c,a} = \eta_{c,a+b+c} = 1, \quad \eta_{a,a+b} = \eta_{c,b+c} = -1.$

(2.2) For any
$$r \in \Phi^+$$
 we have $x_r(\alpha)x_r(\beta) = x_r(\alpha+\beta)$, $h_r(\lambda)h_r(\mu) = h_r(\lambda\mu)$.

If $r, s \in \Phi^+$ are distinct. then

$$[x_r(\alpha), x_s(\beta)] = x_{r+s}(N_{r,s}\alpha\beta), [h_r(\lambda), h_s(\mu)] = 1.$$

And for any $r, s \in \Phi^+$ we have

$$h_r(\lambda) x_s(\alpha) h_r(\lambda)^{-1} = x_s(\lambda^{A_{rs}}\alpha).$$

(2.3) For any $r, s \in \Phi^+$ we have $n_r x_s(\alpha) n_r^{-1} = x_{w_r(s)}(\eta_{r,s}\alpha), \quad n_r h_s(\lambda) n_r^{-1} = h(\chi),$ where χ is a character defined by $\chi(t) = \lambda^T$ with $T = A_{s,w_r(t)}$.

The nontrivial symmetry ρ of the Dynkin diagram for A_3 is given by $\rho(a) = c$, $\rho(b) = b$, $\rho(c) = a$. Thus $S_1 = \{a, c\}$ and $S_2 = \{b\}$ are orbits in \prod under the action of ρ . Define $w_1 = w_a w_c$ and $w_2 = w_b$. Then

$$w_1(a) = -a,$$
 $w_1(b) = a+b+c,$ $w_1(c) = -c,$ $w_2(a) = a+b,$ $w_2(b) = -b,$ $w_2(c) = b+c.$

Therefore, w_1 and w_2 are involutions satisfying $(w_1w_2)^4=1$. Set $S_3=\{a+b,\ b+c\}$ and $S_4=\{a+b+c\}$. Then we have

$$w_1(S_1) = -S_1, \quad w_1(S_2) = S_4, \quad w_1(S_3) = S_3,$$

$$w_2(S_1) = S_3, w_2(S_2) = -S_2, w_2(S_4) = S_4.$$

Hence the Weyl group W of the twisted Chevalley group ${}^2A_3(q)$ is generated by w_1 and w_2 , and $W = \langle w_1, w_2 \rangle$ is dihedral of order 8.

Now we define elements of ${}^{2}A_{3}(q)$ as follows:

$$x_{1}(\alpha) = x_{a}(\alpha)x_{c}(\overline{\alpha}), \quad \alpha \in F; \qquad x_{2}(\beta) = x_{b}(\beta), \quad \beta \in F_{0};$$

$$x_{3}(\gamma) = x_{a+b}(\gamma)x_{b+c}(\overline{\gamma}), \quad \gamma \in F; \quad x_{4}(\delta) = x_{a+b+c}(\delta), \quad \delta \in F_{0};$$

$$h_{1}(\mu) = h_{a}(\mu)h_{c}(\overline{\mu}), \quad \mu \in F^{*}; \quad h_{2}(\lambda) = h_{b}(\lambda), \quad \lambda \in F_{0}^{*};$$

$$n_{1} = n_{a}n_{c}, \quad n_{2} = n_{b},$$

where $F^*=F-\{0\}$ and $F_0^*=F_0-\{0\}$.

Using (*), (**) and (2.1) \sim (2.3), we can easily prove the following properties of ${}^{2}A_{3}(q)$.

(2.4) Let
$$U_1 = \{x_1(\alpha) \mid \alpha \in F\}, \quad U_2 = \{x_2(\beta) \mid \beta \in F_0\}, \\ U_3 = \{x_3(\gamma) \mid \gamma \in F\}, \quad U_4 = \{x_4(\delta) \mid \delta \in F_0\}, \quad U = U_1 U_2 U_3 U_4.$$

Then U_1 , U_2 , U_3 , U_4 are elementary abelian p-subgroups such that $|U_1| = |U_3| = q^2$ and $|U_2| = |U_4| = q$. The multiplication in each U_i is given by $x_i(\alpha)x_i(\beta) = x_i(\alpha\beta)$.

The subgroup U is a Sylow p-subgroup of ${}^2A_3(q)$ of order q^6 with center $Z(U)=U_4$. Every element of U is uniquely expressed as a product $x_1(\alpha)x_2(\beta)x_3(\gamma)x_4(\delta)$. We have

$$[x_1(\alpha), x_2(\beta)] = x_3(\alpha\beta)x_4(\alpha\bar{\alpha}\beta), [x_3(\gamma), x_1(\alpha)] = x_4(\alpha\bar{\gamma} + \bar{\alpha}\gamma),$$

and all other types of commutators between elements of the various U_i are trivial.

$$H_1 = \{h_1(\mu) \mid \mu \in F^*\}, \quad H_2 = \{h_2(\lambda) \mid \lambda \in F_0^*\},$$

 $H = H_1H_2, \qquad d = (4, q+1).$

Then H_1 is a cyclic group isomorphic to $F^*/\langle -1 \rangle$ and

$$h_1(\mu)h_1(\mu') = h_1(\mu\mu'); \quad h_1(\mu) = h_1(\mu') \iff \mu = \pm \mu'.$$

The subgroup H_2 is a cyclic group isomorphic to F_0^* and

$$h_2(\lambda) h_2(\lambda') = h_2(\lambda \lambda'); \qquad h_2(\lambda) = 1 \iff \lambda = 1.$$

The subgroup H is abelian of order $\frac{1}{d}(q^2-1)(q-1)$, and every element of H can be expressed as a product $h_1(\mu)h_2(\lambda)$.

If
$$d=1$$
 or $d=2$, then $H=H_1\times H_2$.
If $d=4$, then $H_1\cap H_2=\{1, h_2(-1)\}$. In general, we have

$$h_1(\mu) h_2(\lambda) = 1 \iff \mu^d = 1 \text{ and } \mu^2 = \lambda.$$

(2.6) Let B = UH. Then B is the normalizer of U in ${}^2A_3(q)$, and the action of $h = h_1(\mu)h_2(\lambda) \in H$ on U is given by

$$\begin{array}{ll} h^{-1}x_1(\alpha) h = x_1(\mu^{-2}\lambda\alpha), & h^{-1}x_2(\beta) h = x_2(\mu\bar{\mu}\lambda^{-2}\beta), \\ h^{-1}x_3(\gamma) h = x_3(\mu^{-1}\bar{\mu}\lambda^{-1}\gamma), & h^{-1}x_4(\delta) h = x_4(\mu^{-1}\bar{\mu}^{-1}\delta). \end{array}$$

(2.7) Let $M = \langle n_1, n_2 \rangle$ and N = HM. Then $H = B \cap N$ and H is normal in N. The action of M on H is given by

$$n_1h_1(\mu)n_1 = h_1(\mu^{-1}),$$
 $n_1h_2(\lambda)n_1 = h_1(\lambda)h_2(\lambda),$
 $n_2^{-1}h_1(\mu)n_2 = h_1(\mu)h_2(\mu\bar{\mu}),$ $n_2^{-1}h_2(\lambda)n_2 = h_2(\lambda^{-1}).$

There is an isomorphism of N/H onto W which sends n_1H into w_1 and n_2H into w_2 .

If q is even, then M is a dihedral group of order 8 generated by two involutions n_1 and n_2 satisfying $(n_1n_2)^4=1$. Moreover, $M \cap H=1$. If q is odd, then M is a nonabelian group of order 16 such that

$$n_1^2=1, \quad n_2^2=h_2(-1), \quad (n_1n_2)^4=1, \ Z(M)=\langle h_2(-1)\rangle imes \langle (n_1n_2)^2\rangle, \quad M'=\langle [n_1,n_2]\rangle, \quad M\cap H=\langle h_2(-1)\rangle.$$

(2.8) The elements n_1 and n_2 transform the elements of U in the following manner:

$$\begin{array}{ll} n_1x_1(\alpha)n_1=x_1(-\alpha^{-1})h_1(\alpha^{-1})n_1x_1(-\alpha^{-1}), & \alpha\neq 0;\\ n_2^{-1}x_2(\beta)n_2=x_2(-\beta^{-1})h_2(\beta^{-1})n_2x_2(-\beta^{-1}), & \beta\neq 0;\\ n_1x_2(\beta)n_1=x_4(-\beta), & n_1x_3(\gamma)n_1=x_3(-\bar{\gamma}), & n_1x_4(\delta)n_1=x_2(-\delta),\\ n_2^{-1}x_1(\alpha)n_2=x_3(\alpha), & n_2^{-1}x_3(\gamma)n_2=x_1(-\gamma), & n_2^{-1}x_4(\delta)n_2=x_4(\delta). \end{array}$$

(2.9) The subgroups B and N form a (B, N)-pair of ${}^2A_3(q)$. The group ${}^2A_3(q)$ is the disjoint union of eight double cosets of the form BnB, where n runs through the transversal

$$\overline{N} = \{1, n_1, n_2, n_1n_2, n_2n_1, n_1n_2n_1, n_2n_1n_1, (n_1n_2)^2\}$$

of $\langle h_2(-1) \rangle$ in N. In fact, we have $BnB=BnU_n$, where U_n is given in the following table:

$$n:$$
 1 n_1 n_2 n_1n_2 n_2n_1 $n_1n_2n_1$ $n_2n_1n_2$ $(n_1n_2)^2$ $U_n:$ 1 U_1 U_2 U_2U_3 U_1U_4 $U_1U_3U_4$ $U_2U_3U_4$ $U_1U_2U_3U_4$.

Every element of ${}^2A_3(q)$ can be uniquely expressed as a product bny, where $b \in B$, $n \in \overline{N}$ and $y \in U_n$.

(2.10) There exists an isomorphism of ${}^2A_3(q)$ onto $U_4(q) = SU_4(q)/Z$ which sends

$$x_1(lpha)$$
 into $egin{pmatrix} 1 & lpha & \ 1 & ar{lpha} & \ 1$

Note that if q is even then $(2.4)\sim(2.9)$ are identical with $(2.1)\sim(2.6)$ in [3].

Using $(2.4)\sim(2.10)$ we can construct a group which is isomorphic to $SU_4(q)$ in the following way:

(2.11) Let $\overline{H}_1 = \{\overline{h}_1(\mu) \mid \mu \in F^*\}$ be a cyclic group isomorphic to F^* , whose multiplication is defined by $\overline{h}_1(\mu)\overline{h}_1(\mu') = \overline{h}_1(\mu\mu')$. Let $\overline{H} = \overline{H}_1 \times H_2$ and define the relations between $\overline{h}_1(\mu)$ and $x_i(\alpha)$, n_i , n_2 to be the same as those relations between $h_1(\mu)$ and $x_i(\alpha)$, n_1 , n_2 in $(2.4) \sim (2.8)$.

Then the group $\overline{G} = \langle U, \overline{H}, n_1, n_2 \rangle$ is isomorphic to $SU_4(q)$. Moreover, an isomorphism of \overline{G} onto $SU_4(q)$ can be defined as in (2.10) by replacing $h_1(\mu)$ by $\overline{h}_1(\mu)$ and omitting Z.

3. Parabolic subgroups and elements of order p

From now on we identify $U_4(q)$ with the twised Chevalley group ${}^2A_3(q)$, where $q=p^e$ and p is a prime. The letter which is introduced in section 2 will keep its meaning throughout this paper.

In this section we will discuss some properties of maximal parabolic subgroups of $U_4(q)$. We also explicitly determine all the elements of $U_4(q)$ of order p and the centralizers of some elements of order p.

$$B_1 = B \cup Bn_1U_1$$
, $B_2 = B \cup Bn_2U_2$.

Then B_1 and B_2 are maximal parabolic subgroups of $U_4(q)$, and every parabolic subgroups of $U_4(q)$ is conjugate to B, B_1, B_2 or $U_4(q)$.

Proof. This follows from the (B, N)-pair structure of $U_4(q)$.

(3. 2) Let

$$B_1 = B \cup Bn_1U_1$$
, $P_1 = UH_1 \cup UH_1n_1U$, $P = U_1H_1 \cup U_1H_1n_1U_1$.

Then the following hold:

- (1) B_1 has a maximal normal p-subgroup $U_2U_3U_4$, which is an elementary abelian p-subgroup of order q^4 . The subgroup $U_1H \cup U_1Hn_1U_1$ is a complement of $U_2U_3U_4$ in B_1 .
- (2) P_1 is a normal subgroup of B_1 such that $B_1 = P_1H_2$ and B_1/P_1 is cyclic. And P is a complement of a normal subgroup $U_2U_3U_4$ in P_1 .

 Moreover, $P \cong PSL_2(q^2)$.

Proof. Using $(2.4)\sim(2.9)$ we can easily prove the assertions. Note that

$$h_2(\lambda)^{-1}n_1h_2(\lambda) = h_1(\lambda)n_1.$$

It is easy to show that there exists an isomorphism of the group P onto $PSL_2(q^2)$ which sends $x_1(\alpha)$, $h_1(\mu)$, n_1 into

$$\begin{pmatrix} 1 & \alpha \\ & 1 \end{pmatrix} Z_1, \quad \begin{pmatrix} \mu \\ & \mu^{-1} \end{pmatrix} Z_1, \quad \begin{pmatrix} & 1 \\ & -1 \end{pmatrix} Z_1,$$

respectively. Here Z_1 denotes the center of $SL_2(q^2)$. Notice that the above matrices are obtained from the corresponding matrices given in (2.10) in a suitable way.

(3.3) Let

 $B_2 = B \cup Bn_2U_2$, $P_2 = UH_2 \cup UH_2n_2U_2$, $Q = U_2H_2 \cup U_2H_2n_2U_2$. Then the following hold:

- (1) B_2 has a maximal normal p-subgroup $U_1U_3U_4$ of order q^5 . The subgroup $U_2H \cup U_2Hn_2U_2$ is a complement of $U_1U_3U_4$ in B_2 .
- (2) P_2 is a normal subgroup of B_2 such that $B_2=P_2H_1$ and B_2/P_2 is cyclic. And Q is a complement of a normal subgroup $U_1U_3U_4$ in P_2 .
 - (3) P_2 isomorphic to a subgroup of $SU_4(q)$ and

$$Q \cong SL_2(q) \cong SU_2(q)$$
.

Proof. The assertions can be proved by using $(2.4)\sim(2.9)$. Note that

$$h_1(\mu)^{-1}n_2h_1(\mu) = h_2(\mu\bar{\mu})n_2.$$

By (2.11) we can prove that there exists a monomorphism of P_2 into $SU_4(q)$ which sends $x_1(\alpha)$, $x_2(\beta)x_3(\gamma)x_4(\delta)$, $h_2(\lambda)$, n_2 into

$$\begin{pmatrix} 1 & \alpha \\ 1 & 1 & \overline{\alpha} \\ & & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & \gamma & \delta \\ & 1 & \beta & -\overline{\gamma} \\ & & & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & & \\ & \lambda & \\ & & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & & \\ & 1 & \\ & & & 1 \end{pmatrix},$$

respectively. Using this monomorphism we can show that there exists an isomorphism of Q onto $SL_2(q)$ which sends $x_2(\beta)$, $h_2(\lambda)$, n_2 into

$$\begin{pmatrix} 1 & \beta \\ & 1 \end{pmatrix}$$
, $\begin{pmatrix} \lambda & & \\ & \lambda^{-1} \end{pmatrix}$, $\begin{pmatrix} & 1 \\ & -1 \end{pmatrix}$,

respectively. Hence we have $Q \cong SL_2(q) \cong SU_2(q)$.

(3.4) Let

 $P = U_1 H_1 \cup U_1 H_1 n_1 U_1, \quad n_2^{-1} P n_2 = U_3 H_3 \cup U_3 H_3 h_2 (-1) n_2 n_1 n_2 U_3,$ where $H_3 = n_2^{-1} H_1 n_2 = \{h_1(\mu) h_2(\mu \bar{\mu}) \mid \mu \in F^*\}.$ Then $P \cong n_2^{-1} P n_2 \cong PSL_2(q^2), \quad \langle P, n_2^{-1} P n_2 \rangle = U_4(q).$

Proof. The first assertion follows from (3.2). Recall that $n_2^{-1} = h_2(-1)n_2$. Since $[U_3, U_1] = U_4$, $n_1U_4 = U_2n_1$, $H_1H_3 = H$, the subgroup $\langle P, n_2^{-1}Pn_2 \rangle$ contains a maximal parabolic subgroup $B_1 = B \cup Bn_1U_1$. Hence we have $\langle P, n_2^{-1}Pn_2 \rangle = U_4(q)$, by (3.1).

Compared to the subgroup P, the subgroup $Q=U_2H_2\cup U_2H_2n_2U_2$ has a nice property as we can see in the next proposition. Note that if q is even then $h_2(-1)=h_2(1)=1$, and if q is odd then $h_2(-1)$ is an involution. In any case n_1 is an involution.

(3.5) Let

 $Q = U_2H_2 \cup U_2H_2n_2U_2, \quad R = n_1Qn_1 = U_4H_4 \cup U_4H_4n_1n_2n_1U_4,$ where $H_4 = n_1H_2n_1 = \{h_1(\lambda)h_2(\lambda) \mid \lambda \in F_0^*\}$. Then the following hold:

(1) We have

$$Q \cong R \cong SL_2(q) \cong SU_2(q), [Q, R]=1,$$

 $Z(Q) = Z(R) = Q \cap R = H_2 \cap H_4 = \langle h_2(-1) \rangle.$

(2) Let E=QR and $K=H_2H_4$. Then E and K are subgroups and we have

 $E = U_2 U_4 K \cup U_2 U_4 K n_2 U_2 \cup U_2 U_4 K n_1 n_2 n_1 U_4 \cup U_2 U_4 K (n_1 n_2)^2 U_2 U_4.$ If q is even, then $E = Q \times R$ and $|E| = q^2 (q^2 - 1)^2$.

If q is odd, then E is the central product of Q and R such that $Z(E) = Z(Q) = Z(R) = \langle h_2(-1) \rangle$, and $|E| = \frac{1}{2}q^2(p^2-1)^2$.

Proof. It is easy to see that Q and R centralize each other. Now the

assertion can be easily proved by (3.3) and (2.4) \sim (2.8).

We will explicitly determine all elements of order p in $U_4(q)$. Since U is a Sylow p-subgroup of $U_4(q)$, it suffices to find all elements of order p in U.

- (3.6) The following is the list of all elements of order p which are contained in the Sylow p-subgroup $U = U_1U_2U_3U_4$.
 - (i) the case when p=2. every nonidentity element in $U_2U_3U_4$, and every element of the form $x_1(\alpha)x_3(\alpha\beta)x_4(\delta)$, where $\alpha \in F^*$; $\beta, \delta \in F_0$.
 - (ii) the case when p=3. every nonidentity element in $U_2U_3U_4$, and every nonidentity element in $U_1U_3U_4$.
 - (iii) the case when $p \ge 5$. every nonidentity element in U.

Proof. By the assertion (3) in (3.3) there exists a monomorphism of U into $SU_4(q)$. For each element a of U, let $A \in SU_4(q)$ be the matrix corresponding to a under this monomorphism. Then it is clear that $(A-I)^4=0$ holds, where I and 0 are the identity matrix and zero matrix, respectively. On the other hand, F is a field of characteristic p. Therefore, if $p \ge 5$ then we have $0 = (A-I)^p = A^p - I$, which implies that $a^p = 1$. Hence (iii) holds.

An easy calculation yields (i) and (ii).

It is easy to show that $x_4(1)$ and $x_3(1)$ are not conjugate in $U_4(q)$. Hence there at least two conjugacy classes of elements of order p. In particular, if q is even, that is, if p=2, then there are exactly two conjugacy classes of involutions in $U_4(q)$. By (3.2) and (3.3) it is easy to prove the following two propositions (cf. [3]).

(3.7) Let C be the centralizer of $x_4(1)$ in $U_4(q)$. Then $C = UL \cup ULn_2U_2 \subset B_2 = B \cup Bn_2U_2$,

where $L=\{h_1(\mu) \mid \mu \in F^*, \mu \overline{\mu}=1\}$, and C is of order $q^6(q+1)^2$ or $\frac{1}{2}q^6(q+1)^2$ according as q is even or odd.

Moreover, $U_1U_3U_4$ is a maximal normal p-subgroup of C, and $U_2L \cup U_2Ln_2U_2$ is a complement of $U_1U_3U_4$ in C.

(3.8) Let C_1 be the centralizer of $x_3(1)$ in $U_4(q)$. Then $C_1 = \bar{U}_1 U_2 U_3 U_4 J \cup \bar{U}_1 U_2 U_3 U_4 J h_2 (-1) n_1 \bar{U}_1 \subset B_1 = B \cup B n_1 U_1,$

where

$$\bar{U}_1 = \{x_1(\alpha) \mid \alpha \in F, \ \bar{\alpha} = -\alpha\},
J = \{h_1(\lambda) \mid \lambda \in F_0^*\} \cup \{h_1(\mu)h_2(-1) \mid \mu \in F^*, \bar{\mu} = -\mu\}.$$

The subgroup $U_2U_3U_4$ is a maximal normal p-subgroup of C_1 , and $\bar{U}_1J\cup \bar{U}_1Jh_2(-1)n_1\bar{U}_1$ is a complement of $U_2U_3U_4$ in C_1 .

If q is even, then $|C_1|=q^5(q^2-1)$ and

$$(\overline{U}_1J \cup \overline{U}_1Jn_1\overline{U}_1) \cong SL_2(q) = PSL_2(q).$$

If $q \equiv 1 \pmod{4}$, then $|C_1| = q^5(q^2 - 1)$.

If
$$q \equiv -1 \pmod{4}$$
, then $|C_1| = \frac{1}{2}q^5(q^2-1)$.

4. Involutions and their centralizers in $U_4(q)$, where $q \equiv 1 \pmod 4$

In this section we assume that $q \equiv 1 \pmod{4}$, and we will determine the centralizers of involutions in $U_4(q)$. We have

$$d = (4, q+1) = 4,$$
 $|U_4(q)| = \frac{1}{2}q^6(q^2-1)^2(q^2+1)(q^3+1).$

- (4.1) Let C be the centralizer of the involution $h_2(-1)$ in $U_4(q)$. Then the following hold:
 - (1) We have

$$C = U_2 U_4 H \cup U_2 U_4 H n_1 \cup U_2 U_4 H n_2 U_2 \cup U_2 U_4 H n_1 n_2 U_2 \cup U_2 U_4 H n_2 n_1 U_4 \cup U_2 U_4 H n_2 n_1 U_4 \cup U_2 U_4 H (n_1 n_2)^2 U_2 U_4,$$

$$|C| = q^2 (q^2 - 1)^2 (q + 1).$$

(2) Let

$$D = U_2U_4H \cup U_2U_4Hn_2U_2 \cup U_2U_4Hn_1n_2n_1U_4 \cup U_2U_4H(n_1n_2)^2U_2U_4,$$

$$E = U_2U_4K \cup U_2U_4Kn_2U_2 \cup U_2U_4Kn_1n_2n_1U_4 \cup U_2U_4K(n_1n_2)^2U_2U_4,$$

$$Q = U_2H_2 \cup U_2H_2n_2U_2,$$

 $R=n_1Qn_1=U_4H_4\cup U_4H_4n_1n_2n_1U_4$, $H_4=n_1H_2n_1$, $K=H_2H_4$. Then D and E are normal subgroups of C such that

- i) $C \supset D \supset E = QR$, |C:D| = 2, |D:E| = q+1,
- ii) $C=D\langle n_1\rangle$, $D=EH_1$, and D/E is cyclic of order q+1,
- iii) E is the central product of Q and R, where

$$Q \cong R \cong SL_2(q) \cong SU_2(q).$$

Proof. By (2.8) the centralizer of $h_2(-1)$ in U is U_2U_4 , and by (2.7), N centralizes $h_2(-1)$. From this fact and (2.9) we can prove the assertion (1). Using (3.5) and $(2.5)\sim(2.9)$, we can easily prove the assertion (2).

- (4.2) Let C_1 be the centralizer of the involution $h_1(\xi_0)h_2(-1)$ in $U_4(q)$, where ξ_0 is a primitive 4-th root of unity in F^* . Then the following hold:
 - (1) We have

$$C_1 = U_1 H \cup U_1 H n_1 U_1 \cup U_1 H n_2 n_1 n_2 \cup U_1 H (n_1 n_2)^2 U_1,$$

 $|C_1| = q^2 (q^4 - 1) (q - 1).$

(2) Let

$$D_1 = U_1 H \cup U_1 H n_1 U_1, \quad P = U_1 H_1 \cup U_1 H_1 n_1 U_1.$$

Then D_1 and P are normal subgroups of C_1 such that

- i) $C_1 \supset D_1 \supset P$, $|C_1 : D_1| = 2$, $|D_1 : P| = q 1$,
- ii) $C_1=D_1\langle n\rangle=P\langle H_2,n\rangle$ and $D_1=PH_2$ are semidirect products, where $n=(n_1n_2)^2$ and $\langle H_2,n\rangle$ is dihedral of order 2(q-1).
- iii) $P \cong PSL_2(q^2)$.

Proof. The centralizer of $h_1(\xi_0)h_2(-1)$ in U is U_1 , and the centralizer of this involution in N is $H\langle n_1, n_2n_1n_2\rangle$. Hence the assertion (1) holds. Now we can prove the assertion (2) by using (3.2).

(4.3) There are exactly two conjugacy classes of involutions in $U_4(q)$ with representatives $h_2(-1)$ and $h_1(\xi_0)h_2(-1)$. Thus the centralizer of any involution in $U_4(q)$ is conjugate in $U_4(q)$ to either C or C_1 .

This result is known (cf. [4]). Thus we will sketch the proof. Let 2^m be the highest power of 2 dividing q-1, that is, $2^m||q-1$. Then

$$2^{m}||F_{0}^{*}|, \quad 2^{m+1}||F^{*}|, \quad 2^{2m+3}||N|, \quad 2^{2m+3}||U_{4}(q)|.$$

Hence any Sylow 2-subgroup of N is a Sylow 2-subgroup of $U_4(q)$, and so every involution of $U_4(q)$ is conjugate in $U_4(q)$ to an involution in N. The following is the list of all involutions in N.

(I)
$$h_2(-1)$$
;
 $h_1(\mu)h_2(-1)n_1, \ \mu \in F^*$;
 $h_1(\mu)h_2(\mu\bar{\mu})n_2n_1n_2, \ \mu \in F^*$;
 $h_1(\mu)h_2(\lambda)(n_1n_2)^2, \ \lambda \in F_0^*$,
 $\mu \in F^*, \ \bar{\mu} = -\mu$.

(II)
$$h_1(\xi_0)$$
; $h_1(\xi_0)h_2(-1)$;
 $h_1(\mu)n_1$, $\mu \in F^*$;
 $h_1(\xi_0)h_2(\lambda)n_2$, $\lambda \in F_0^*$;
 $h_1(\xi_0\lambda)h_2(\lambda)n_1n_2n_1$, $\lambda \in F_0^*$;
 $h_1(\mu)h_2(-\mu\bar{\mu})n_2n_1n_2$, $\mu \in F^*$;
 $h_1(\mu)h_2(\lambda)(n_1n_2)^2$, μ , $\lambda \in F_0^*$.

Now we can show that involutions in (I) are conjugate in $U_4(q)$ to $h_2(-1)$, and involutions in (II) are conjugate to $h_1(\xi_0)h_2(-1)$.

5. Involutions and their centralizers in $U_4(q)$, where $q \equiv -1 \pmod{4}$

In this section we assume that $q \equiv -1 \pmod{4}$, and we will determine the centralizers of involutions in $U_4(q)$.

Assume that $q \equiv -1 \pmod{4}$. Then

$$d = (4, q+1) = 4, |U_4(q)| = \frac{1}{4}q^6(q^2-1)^2(q^2+1)(q^3+1).$$

- (5.1) Let C be the centralizer of the involution $h_2(-1)$ in $U_4(q)$. Then the following hold:
 - (1) We have

$$\begin{split} C &= U_2 U_4 H \cup U_2 U_4 H n_1 \cup U_2 U_4 H n_2 U_2 \cup U_2 U_4 H n_1 n_2 U_2 \cup U_2 U_4 H n_2 n_1 U_4 \\ &\quad \cup U_2 U_4 H n_1 n_2 n_1 U_4 \cup U_2 U_4 H n_2 n_1 n_2 U_2 U_4 \cup U_2 U_4 H (n_1 n_2)^2 U_2 U_4, \\ &\quad |C| = \frac{1}{2} q^2 (q^2 - 1)^2 (q + 1). \end{split}$$

(2) *Let*

$$D = U_2 U_4 H \cup U_2 U_4 H n_2 U_2 \cup U_2 U_4 H n_1 n_2 n_1 U_4 \cup U_2 U_4 H (n_1 n_2)^2 U_2 U_4,$$

$$E = U_2 U_4 K \cup U_2 U_4 K n_2 U_2 \cup U_2 U_4 K n_1 n_2 n_1 U_4 \cup U_2 U_4 K (n_1 n_2)^2 U_2 U_4,$$

$$Q = U_2 H_2 \cup U_2 H_2 n_2 U_2,$$

$$R = n_1 Q n_1 = U_4 H_4 \cup U_4 H_4 n_1 n_2 n_1 U_4,$$

$$H_4 = n_1 H_2 n_1, \quad K = H_2 H_4.$$

Then D and E are normal subgroups of C such that

i)
$$C \supset D \supset E = QR$$
, $|C:D| = 2$, $|D:E| = \frac{1}{2}(q+1)$,

- ii) $C=D\langle n_1\rangle=E\langle L, n_1\rangle$, D=EL, $E\cap L=\langle h_2(-1)\rangle$, where $L=\{h_1(\mu)\mid \mu\in F^*, \mu^{2(q+1)}=1\}$ is cyclic of order q+1, and $\langle L, n_1\rangle$ is a dihedral group of order 2(q+1).
 - iii) E is the central product of Q and R, where

$$Q \cong R \cong SL_2(q) \cong SU_2(q)$$
.

Proof. The proof is essentially same as the proof of (4.1). We will prove the part ii) of (2).

Let ω be a primitive element of F. Then $F^* = \langle \omega \rangle$ and $F_0^* = \langle \omega^{q+1} \rangle$. Let $\xi = \omega^{\frac{1}{2}(q-1)}$. Since $q \equiv -1 \pmod{4}$, two integers $\frac{1}{2}(q-1)$ and q+1 are relatively prime. Hence we have $F^*=\langle \xi \rangle \times F_0^*$. This implies that $H_1=L\times L_1$, where

$$L = \langle h_1(\xi) \rangle = \{h_1(\mu) \mid \mu \in F^*, \ \mu^{2(q+1)} = 1\}, \ L_1 = \{h_1(\lambda) \mid \lambda \in F_0^*\}.$$

Therefore, H=KL and $K \cap L=\langle h_2(-1) \rangle$. Note that $h_2(-1)=h_1(\xi_0)$, where ξ_0 is a primitive 4-th root of unity which is in $\langle \xi \rangle$. Since the involution n_1 inverts $h_1(\xi)$, the group $\langle L, n_1 \rangle$ is a dihedral group of order 2(q+1).

Using the above results we can prove the assertion ii).

- (5.2) Assume that $q \equiv -1 \pmod{8}$. Let ξ be a primitive 8-th root of unity in F^* and let $\xi_0 = \xi^2$. Then $h_1(\xi) n_2$ is an involution of $U_4(q)$.
- Let C_1 be the centralizer of the involution $h_1(\xi)n_2$ in $U_4(q)$. Then the following hold:
 - (1) We have $C_1 = U_0 H_0 \cup U_0 \mathcal{F} \cup U_0 H_0 n_1 n_2 n_1 U_0 \cup U_0 \mathcal{F} n_1 n_2 n_1 U_0,$ $|C_1| = \frac{1}{4} q^3 (q+1) (q^2-1) (q^3+1),$

where

$$U_{0} = \{x_{1}(\alpha)x_{3}(-\xi_{0}\alpha)x_{4}(\delta) \mid \alpha \in F, \delta \in F_{0}\},\$$

$$H_{0} = \{h_{1}(\mu)h_{2}(\lambda) \mid \mu \in F^{*}, \lambda \in F_{0}^{*}, \mu\bar{\mu} = \lambda^{2}\},\$$

$$\mathcal{F} = \{x_{2}(\beta)h_{1}(\mu)h_{2}(\lambda)n_{2}x_{2}(\beta) \mid \mu \in F^{*}, \lambda \in F_{0}^{*}, \beta \in F_{0}, \mu\bar{\mu}(\beta^{2}+1) = \lambda^{2}\}.$$

(2) Let

$$T = H_0 \cup \mathcal{F},$$

$$T_0 = \{h_1(\lambda) h_2(\lambda), x_2(\beta) h_1((\beta - \xi_0)^{-1} \lambda) h_2(\lambda) n_2 x_2(\beta) \mid \lambda, \beta \in F_0^* \}.$$

Then

$$C_1 = U_0 T \cup U_0 T n_1 n_2 n_1 U_0, \quad U_0 T = U_0 H_0 \cup U_0 \mathcal{F}.$$

Moreover, U_0T , T, T_0 are subgroups of a maximal parabolic subgroup $B_2=B \cup Bn_2U_2$ such that $U_0T \supset T \supset T_0$ and U_0 is normal in U_0T .

(3) Let

$$D_1 = U_0 T_0 \cup U_0 T_0 n_1 n_2 n_1 U_0.$$

Then D_1 is a normal subgroup of C_1 such that

i) $C_1 = D_1 J$, $D_1 \cap J = \langle h_2(-1) \rangle$, and

 C_1/D_1 is cyclic of order $\frac{1}{4}(q+1)$, where $J=\{h_1(\mu) \mid \mu \in F^*, \ \mu \overline{\mu}=1\}$ is a cyclic group of order $\frac{1}{2}(q+1)$, and

ii) $D_1 \cong SU_3(q)$.

Proof. Since $q \equiv -1 \pmod{8}$, we have $\xi \bar{\xi} = 1$. Hence $h_1(\xi) n_2$ is an involution, by (2.7).

Using (2.9) and (2.10) we can prove the assertion (1). By definition of T, we have $U_0T=U_0H_0\cup U_0\mathcal{F}$ and it is the centralizer of $h_1(\xi)n_2$ in B_2 . Hence U_0T is a subgroup. Now it is easy to show that T and T_0 are subgroups and U_0 is normal in U_0T .

Suppose shat $\mu\bar{\mu}=\lambda^2$, where $\mu\in F^*$ and $\lambda\in F_0^*$. If we set $\eta=\mu\lambda^{-1}$, then we have $\mu=\lambda\eta$ and $\eta\bar{\eta}=1$. Suppose that $\mu\bar{\mu}(\beta^2+1)=\lambda^2$ where $\mu\in F^*$, $\lambda\in F_0^*$ and $\beta\in F_0$. Set $\eta=\mu\lambda^{-1}(\beta-\xi_0)$. Since $\xi_0\bar{\xi}_0=1$ and $\bar{\xi}_0=-\xi_0$, we have $\eta\bar{\eta}=1$ and $\mu=(\beta-\xi_0)^{-1}\lambda\eta$. Let

$$H_4 = n_1 H_2 n_1 = \{h_1(\lambda) h_2(\lambda) \mid \lambda \in F_0^*\}, J = \{h_1(\eta) \mid \eta \in F^*, \eta \bar{\eta} = 1\}.$$

Then the above results yield that $H_0=H_4J$ and $T=H_0\cup\mathcal{F}=T_0J$. Since J normalizes U_0 and centralizes both T_0 and $n_1n_2n_1$, the subgroup D_1 is a normal subgroup of C_1 . And we have $C_1=D_1J$ and $D_1\cap J=H_4\cap J=\langle h_2(-1)\rangle$, where $h_2(-1)=h_1(\xi_0)$.

Finally we can show that there exists an isomorphism of D_1 onto $SU_3(q)$ which sends

 $x_1(\alpha) x_3(-\xi_0 \alpha) x_4(\delta)$, $h_1(\lambda) h_2(\lambda)$, $x_2(\beta) h_1(\beta - \xi_0)^{-1} n_2 x_2(\beta)$, $n_1 n_2 n_1$ into

$$\begin{pmatrix} 1 & 2\alpha & -\xi_0\alpha\overline{\alpha} + \delta \\ 1 & -\xi_0\overline{\alpha} \\ & 1 \end{pmatrix}, \begin{pmatrix} \lambda \\ 1 \\ & \lambda^{-1} \end{pmatrix}, \begin{pmatrix} (\beta - \xi_0)^{-1} \\ \frac{\beta - \xi_0}{\beta + \xi_0} \\ \beta + \xi_0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

respectively.

This completes the proof of (5.2).

(5.3) If $q \equiv 3 \pmod{8}$, then there is exactly one conjugacy classes of involutions in $U_4(q)$ with representative $h_2(-1)$.

If $q \equiv -1 \pmod{8}$, then there exactly two conjugacy classes of involutions in $U_4(q)$ with representatives $h_2(-1)$ and $h_1(\xi)n_2$.

The above result is known (cf. [4]). Thus we will sketch the proof. Assume that $q \equiv -1 \pmod{4}$ and let 2^m be the highest power of 2 dividing q+1, that is, $2^m||q+1$. Then

 $m \ge 2$, $2|||F_0^*|$, $2^{m+1}|||F^*|$, $2^{m+3}||N|$, $2^{3m+1}||C|$, $2^{3m+1}||U_4(q)|$. Hence any Sylow 2-subgroup of C is a Sylow 2-subgroup of $U_4(q)$. Thus any involution of $U_4(q)$ is conjugate in $U_4(q)$ to an involution of C. The following is the list of all involutions in C.

(I) $\begin{array}{l} h_{2}(-1)\,; \\ x_{2}(\beta)\,x_{4}(\mu\bar{\mu}\beta)\,h_{1}(\mu)\,n_{1}, \ \beta\!\in\!F_{0}, \ \mu\!\in\!F^{*}; \\ x_{2}(-\beta)\,x_{4}(-\delta)\,h_{1}(\mu)\,h_{2}(\mu\bar{\mu})\,n_{2}n_{1}n_{2}x_{2}(\beta)\,x_{4}(\delta), \ \beta,\delta\!\in\!F_{0}, \ \mu\!\in\!F^{*}; \\ x_{2}(-\beta)\,x_{4}(-\delta)\,h_{1}(\mu)\,h_{2}(\lambda)\,(n_{1}n_{2})^{2}x_{2}(\beta)\,x_{4}(\delta), \ \beta,\delta\!\in\!F_{0}, \ \mu\!\in\!F^{*}, \\ \lambda\!\in\!F_{0}^{*}, \ \bar{\mu}\!=\!\pm\mu. \end{array}$ (II) only when $m\!\geq\!3$ (ξ is a primitive 8-th root in F^{*}) $x_{2}(-\beta)\,h_{1}(\xi)\,h_{2}(\lambda)\,n_{2}x_{2}(\beta), \ \beta\!\in\!F_{0}, \lambda\!\in\!F_{0}^{*}; \\ x_{4}(-\delta)\,h_{1}(\xi\lambda)\,h_{2}(\lambda)\,n_{1}n_{2}n_{1}x_{4}(\delta), \ \delta\!\in\!F_{0}, \lambda\!\in\!F_{0}^{*}. \end{array}$

Note that

 $m=2 \iff q\equiv 3 \pmod{8}$; $m\geq 3 \iff q\equiv -1 \pmod{8}$.

Now we can show that every involution in (I) is conjugate in $U_4(q)$ to $h_2(-1)$, and every involution in (II) is conjugate in $U_4(q)$ to $h_1(\xi)n_2$.

References

- 1. Aschbacher, M. and Seitz, G.M., Involutions in Chevalley groups over fields of even order, Nagoya Math. J., 63(1976), 1-91.
- 2. Carter, R.W., Simple groups of Lie type, Interscience, New York, 1972.
- 3. Park, Seung Ahn, A characterization of the unitary groups $U_4(q)$, $q=2^n$, J. of Algebra, 42(1976), 208-246.
- Phan, K.W., A characterization of the unitary groups PSU(4, q²), q odd,
 J. of Algebra, 17(1971), 132-148.
- Phan, K.W., A characterization of the finite groups PSU(n,q), J. of Algebra, 37 (1975), 313-339.
- 6. Suzuki, M., Group theory I, II, Springer-Verlag, New York, 1981, 1986.

Sogang University Seoul 121, Korea University of Illinois Urbana, Illinois, U.S.A.