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ON FINITE SIMPLE GROUPS
-THE UNITARY GROUPS U4 (q)

SEUNG AHN PARK

1. Introduction

Any finite simple group of Lie type has a (B, N) -pair, and such a
simple group can be studied by using its (B, N) -pair structure. For
example, the projective special unitary group Un (q), where q is a
prime power, is isomorphic to the twisted ChevalIey group 2A n- 1 (q) of
type An-I, and so this group can be studied in this manner.

In this paper we study the simple group U4 (q) by using its (B, N)­
pair structure. As a matter of fact, this study will be continued to the
study on Un(q). We will explicitly determine elements of 2A3 (q) and
give a specific isomorphism of U4 (q) onto 2A 3 (q). Using this infor­
mation, we will study some special subgroups contained in maximal
parabolic subgroups of U4 (q) and find all elements of order p, where
q = pe and p is a prime. We will also explicitly determine the structure
of the centralizers of involutions in - U4 (q). Note)hat

1IU4 (q) I=dq6 (q2-1) (q3+1) (q4-1),

whered=(4, q+1), and that

d=l ~ q=2e and p=2;
d=2 ~ q-1 (mod 4); d=4 ~ q==-l (mod 4).

The determination of involutions and their centralizers in Chevallcy
groups over a finite field of characteristic 2 has been studied in [1].
And a characterization of U4 (q), where q is odd, has been done in [4J
by using matrix presentation. In this paper we treat U4 (q) as the twi·
sted ChevalIey group 2A3 (q) and every element of subgroups are explicitly
expressed. This paper contains some results in the author's paper [3].
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This paper is organized as follows. In section 2 detailed description
for the (B, N)-pair structure of 2As(q) is given. An explicit isomorph­
ism of U4 (q) onto 2As (q) is also given. In section 3 we prove properties
of some special subgroups which are contained in maximal parabolic
subgroups of U4 (q). And elements of order p in U4 (q) is also determined.
In section 4 and section 5 the structure of the centralizers of involutions
in U4(q) are explicitly determined, where q=l (mod 4) or q==-l (mod
4).

The notation and terminology in this paper are standard. They are
taken from [6] for the general finite groups and from [2J for the
Chevalley groups.

2. The groups U4 (q)

Let F be a finite field with q2 elements, where q=pe and p is a prime.
For each element aEF define a by a=aq• Then the map u: F ~F,
u(a) = a, is an automorphism of order 2, and Fo={aEFla=a} is
a subfield of F with q elements.

Let I be a non-degenerate Hermitian product on the four-dimensional
vector space F4 defined by

I( (aI' a2, as, a4), ({3I' {32, (3s, (34» =al{34-a2{3S+as{32-a4{3t>

and let J E Mat4 (F) be the matrix associated with I. Then the general
unitary group GU4 (q) may be identified with the set of all matrices
(aij) E Mat4(F) such that (aij)*J(aij)=J, where (aij)*=(aji). Thus

SU4 (q) = {A E GU4(q) Idet A=l}, U4 (q) =PSU4(q) =SU4(q) /Z,

where Z= {diag{A., A., A., A.} lA.l=l, A.4=1}, and Z is cyclic of order
d=(4, q+l).

The group U4 (q) is isomorphic to the twisted Chevalley group 2As(q)
of type As. We will use the same notation as in [2J to define elements
of 2As (q) • Let 0 be the set of roots of the simple Lie algebra .12 of
type As over the complex number field, and let IT = {a, b, c} be a fun­
damental system in 0. The positive system of roots in 0 is then 0+ =
{a, b, c, a+b, b+c, a+b+c}. Let rJ3= {hr' r E IT; er, r E 0} be a

standard Chevalley basis for.l2. For r, $ E 0 we define Nr,s by [er' esJ=
Nr,ser+s. Then Nr,s is either +1 or 0 according as r+s is a root or not.

Let X r(a), hr (A), h (X) and nr be elements of the Chevalley group
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A3Cq2) as defined in [2J, where r E f/J+ and
hr CA) and nr act on is, as follows:

C*) hrCA) ·hs=h" nr·hs=hwrCs);
hrC)') ·es=).Arses nr·es=rjr.sewrcs),

a, ).EF. The elements

sE n,
s E f/J,

where Wr is the reflection determined by rand A rs 2 Cr, s) The signs
Cr, r) .

of the structure constants Nr,s may be chosen arbitrarily for the pairs
Ca, b), Cb, c), Ca, b+ c) , and then the structure constants for all pairs are
uniquely determined. We will set

C**) Na.b=l, Nb,c= -1, N a,b+c=-1.

Then it is easy to prove the following three propositions.

C2.1) We have Nc,b=Nb+c,a=Na+b,c=l, Nb,a=Nc.a+b=-1.
If r,s,r+s E f/J+, then 1Jr,s=Nros and 1Jr.r=rjr.-r=-1.

We have

rja,c=rja.a+b+c=rjb,a+b = rjb.b+c=1Jb,a+b+c= 1,
1}c.a=1}c,a+b+c=l, 1}a.afb=1}c,b+c=-1.

(2.2) For any r E f/J+ we have
x rCa)xrCf3) =xrCa+f3) , hrC).)hrCfl) =hrC).fl)·

If r, s E f/J+ are distinct, then

[xrCa), XsCf3) J=Xr+sCNr,pf3) , [hr CA), hsCfl) ] = 1.

And for any r, s E f/J+ we have

hr (A) XsCa) hr C).) -I =XsCAArsa).

(2.3) For any r, s E f/J+ we have
nrXs Ca) nr-I =XwrCs) C1}r, sa) , nrhsCA) nr-1 = h CX),

where X is a character defined by XCt)=).T with T=As.wrCt )'

The nontrivial symmetry p of the Dynkin diagram for A3 is given by
p Ca) =c, p (b) =b, p Cc) =a. Thus 8 1= {a, c} and 8 2= {b} are orbits in
n under the action of p. Define Wl =WaWc and W2=Wb. Then

Wl Ca) = -a, Wl Cb) =a+b+c, Wl Cc) = -c,
W2 Ca) =a+b, W2 Cb) = -b, W2 Cc) =b+c.

Therefore, WI and W2 are involutions satisfying CWIW2)4=1. Set
83 = {a+b, b+c} and 8 4= {a+b+c}. Then we have

Wl C8I ) = -81, wI (82) =84, wI (83) =83,
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WZ(SI)=SS, wz(Sz)=-Sz, WZ(S4)=S4'

Hence the Weyl group W of the twisted Chevalley group 2As (q) IS

generated by Wl and Wz, and W=(Wh wz) is dihedral of order 8.
Now we define elements of ZAs(q) as follows:

Xl (a) =xa(a)xc(a) , a E F; xz«(3) =Xb({3) , (3 E Fo;
Xs(r) =Xa+b(r)Xb+c(r) , rE F; X4(O) =Xa+b+c(O) , 0 E Fo;
hl(f.l) =haC!.t)hc(ji) , f.l E F*; hz(A) =hb().) , A E Fo*;
nl=nanc> nZ=nb,

where F*=F- {O} and Fo*=Fo- {O}.
Using (*), (**) and (2. 1)~ (2.3), we can easily prove the following

properties of zAs (q)_

(2.4) Let
Ul = {Xl (a) la E F}, Uz= {xz({3) 1{3 E Fo},
Us= {xs(r) Ir E F}, U4= {X4(0) 10 E Fo}, U= UIUZUSU4.

Then Uh Uz, Us, U4 are elementary abelian p-subgroups such that lUll =
IUs I=qZ and IU2 1= IU41=q. The multiplication in each Ui is given
by Xi (a) Xi «(3) =Xi (a(3) •

The subgroup U is a Sylow p-subgroup of ZAs(q) of order q6 with
center Z(U) = U4• Every element of U is uniquely expressed as a product
Xl (a)xz «(3)XS(r)X4(O). We have

[Xl (a), xz«(3) ]=Xs(a(3)X4(aa{3) , [Xs(r), Xl (a) ] =X4(ar+ar) ,

and all other types of commutators between elements of the various Ui are
trivial.

(2.5) Let

H l= {hl(f.l) If.lEF*}, H z= {hz()') IAEFo*},
H=HIHz, d= (4, q+1).

Then HI is a cyclic group isomorphic to F* / ( - I) and

hI (f.l) hI C!.t') = hI (f.lf.l'); hI (f.l) = hI (f.l') ~ f.l= + f.l'.

The subgroup H z is a cyclic group isomorphic to F0* and

hz(J.)hz ().') =hz()'J.'); hz(A) =1 {:::::? J.=l.

The subgroup H is abelian of order } (qZ-1) (q-1), and every ele­

ment of H can be expressed as a product hI C!.t) hz0).
If d=l or d=2, then H=HIXHz_
If d =4, then HI nH z= {I, hz ( -I)}. In general, we have



On finite simple groups -The unitary groups U4(Q) 205

hI (fl.)h2 (A) =1 {=:? fl.d=1 and fl.z=A.

(2.6) Let B= UH. Then B is the normalizer of U in ZA3(q), and
the action of h = hI Cfl.) h2 (A) E H on U is given by

h-lxl (a) h=XI Cfl.-zAa) , h-lxz (13) h=xz (fl.ilA-zf3) ,
h-lX3 (r)h=x3 (W lil}..-Ir) , h-lx4 (o)h =X4 (w lil- lo).

(2.7) Let M=<nt>nz) and N=HM. Then H=BnN and H is nor­
mal in N. The action of M on H is given by

nIhl Cfl.) nl=h1Cfl.-l) , nlhZ (A) nl=hl (A) hz(A.),
nz-lhl (fl.) nz=hl (fl.) hzCfl.il), nz-1hz (A) nz=hz(A.-I).

There is an isomorphism of N / H onto W which sends nlH into WI and
nzH into wz.

If q is even, then M is a dihedral group of order 8 generated by
two involutions nl and nz satisfying (nInz)4=1. Moreover, MnH=l.
If q is odd, then M is a nonabelian group of order 16 such that

nIz=1, ni=hz( -1), (nInz)4=1,
Z(M) =<hz( -1» X <(nInZ)Z), M' = <[nt> nzJ), MnH=(hz(-1».

(2.8) The elements nl and nz transform the elements of U in the
following manner:

nlxl (a)nl =XI (-a- l)hl (a-l)nlxl (-a-I), a*O;
nz-lxz (13) nz=xz (- 13-1) hZ(f3-1) n2x Z( - 13-1), 13 *0;

nIxZ(f3)nl =X4(- 13), nlx3(r)nl =X3(-7), n1x4(0) nl =xz (-0),
nZ-lxl (a) nZ=x3 (a), nZ-lx3 (r)nZ=x1 (-r), nZ-1x4 (0) nZ=x4 (0).

(2.9) The subgroups Band N form a (B, N) -pair of zA 3(q). The
group ZA3(q) is the disjoint union of eight double cosets of the form
BnB, where n runs through the transversal

N = {l, nt> nz, nlnZ, nZnb n1nZnt> n2nlnl, (nlnZ) Z}

of (hz(-1» in N. In fact, we have BnB=BnUm where Un is given
in the following table:

n: 1 nl nz nlnZ nZnl n1n2n1 nZnln2 (nlnZ) z
Un: 1 Ul U2 UZU3 UIU4 U1U3U4 UZU3U4 U1UZU3U4.

Every element of ZA3(q) can be uniquely expressed as a product bny,
where bE B, nEN and yE Un.

(2.10) There exists an isomorphismof ZA 3(q) onto U4(q)=SU4(q)/Z
which sends
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are identical with (2. 1) r-v

into

XI (a) into

Note that if q is even then
(2.6) in [3J.

Using (2.4)r-v(2.10) we can construct a group which is isomorphic
to SU4 (q) in the following way:

(2. 11)· Let HI =-{hI (fl) Ifl E F*} be a cyciic group isomorphic to F*,
whose multiplication is defined by hI Cfl)hI (f-l') =h1(f-lf-l'). Let H =HIXHz
and define the relations between hI (f-l) and Xi (a), ni, nz to be the same
as those relations between hI (f-l) . and Xi (a), nb nz in (2.4) r-v (2.8).

Then the group G=(U, H, nb nz) is isomorphic to SU4 (q). Moreover,
an isomorphism of G onto S U4 (q) can be defined as in (2. 10) by repla­
cing hI Cfl) by hI (f-l) and omitting Z.

3. Parabolic subgroups and elements of order p

From now on we identify U4 (q) with the twised Chevalley group
zA 3 (q), where q=pe and p is a prime. The letter which is introduced
in section 2 will keep its meaning throughout this paper.

In this section we will discuss some properties of maximal parabolic
subgroups of U4 (q). We also explicitly determine all the elements of
U4 (q) of order p and the centralizers of some elements of order p.

(3.1) Let

B1=BUBn1Ub Bz=BUBnzUz·

Then B1 and Bz are maximal parabolic subgroups of U4 (q), and every
parabolic subgroups of U4 (q) is conjugate to B, B1, Bz or U4 (q).

Proof. This follows from the (B, N) -pair structure of U4 (q).
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(3.2) Let

Bl=BUBnlUh Pl=UHlU UHlnlU, P=UlHlU UlHlnlUl·

Then the following hold:
(1) B l has a maximal normal p-subgroup U2U3 U4, which is an elemen­

tary abelian p-subgroup of order q4. The subgroup UlHU UlHnl U1 is
a complement of U2U3 U4 in Bl.

(2) PI is a normal subgroup of B1 such that Bl=PlHz and BdPI is
cyclic. And P is a complement of a normal subgroup UZU3U4 in PI'

Moreover, P 2:: PSLz(qZ).

Proof. Using (2. 4) "-' (2. 9) we can easily prove the assertions. Note
that

h2 (A.) -lnlhz(A.) =hl (A.) nl.

It is easy to show that there exists an isomorphism of the group P
onto PSL2(qZ) which sends Xl (a) , h1(f..t) , nl into

(1 ~)Zh (f..t f..t-l)Zh (-1 1)Zh
respectively. Here Zl denotes the center of SL2(q2). Notice that the
above matricies are obtained from the corresponding matrices given in
(2. 10) in a suitable way.

(3.3) Let

B2=BU Bn2UZ, P 2=UH2 U UHZn2 UZ. Q=U2H z U UZH ZnZU2•

Then the follOwing hold:

(1) Bz has a maximal normal p-subgroup Ul U3 U4 of order q5. The
subgroup U2HU UzHnzUz is a complement of Ul U3 U4 in Bz•

(2) P 2 is a normal subgroup of B2 such that B2=PzH l and Bz/ P 2 is
cyclic. And Q is a complement of a normal subgroup Ul U3 U4 in P 2-

(3) Pz isomorphic to a subgroup of SU4(q) and

Q 2:: SL2 (q) 2:: S U2 (q).

Proof. The assertions can be proved by using (2. 4) "-' (2. 9). Note that

hI (f..t) -lnzhl (/1) =h2 Cf..tp.) n2·

By (2.11) we can prove that there exists a monomorphism of P 2 into
SU4(q) which sends xl(a). X2(f3)X3 (r)X4 (0) , h2(A.) , nz into
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(1 ~ 1f)' (1 1r-J' (1 ••-,J r-1 1)
respectively. Using this monomorphism we can show that there exists
an isomorphism of Q onto S~(q) which sends X2 (f3), h20), n2 into

(1 ~), ek1)' (-1 1),
respectively. Hence we have Q ~ SL2(q) ~ SU2(q).

(3.4) Let
P=U1H1U U1H1n1Uh n2-1Pn2=UsHsU UsHsh2(-1)n2nln2Us,

where H3=n2-1Hln2= {hI (f!.)h2(f!.Jl) If!. E F*}. Then

P ~ n2-1Pn2 ~ PSL2(q2) , (P, n2-1Pn2) = U4(q).

Proof. The :first assertion follows from (3.2). Recall that n2-1=

h2(-I)n2. Since [Us, U1]=U4, n1U4=U2nh H1Hs=H, the subgroup
(P, n2-1Pn2) contains a maximal parabolic subgroup B1=BUBn1U1.
Hence we have (P, n2-1Pn2) = U4(q) , by (3.1).

Compared to the subgroup P, the subgroup Q=U2H 2U U2H2~U2 has
a nice property as we can see in the next proposition. Note that if q is
even then h2(-1) = h2(1) = 1, and if q is odd then h2(-1) is an
involution. In any case nl is an involution.

(3.5) Let

Q=U2H 2U U2H2n2U2, R=nlQnl=U4H4U U~4nln2nlU4'

where H4=n1H2nl= {hl(.~)h2(il) lilEFo*}. Then the following hold:
(1) We have

Q ~ R ~ SL2(q) ~ SU2(q), [Q, R]=l,
Z(Q) =Z(R) =Q nR=H2nH4=(h2(-I).

(2) Let E=QR and K=H2H4• Then E and K are subgroups and
we have

E=U2U4KU U2U4Kn2U2U U2U4Knln2nlU4U U2U4K(nln2)2U2U4•

If q is even, then E=QXR and IE\=q2(q2-I)2.
If q is odd, then E is the central product of Q and R such that

Z(E) =Z(Q)=Z(R) =(h2(-1), and IEI= ~q2(p2_I)2.

Proof. It is easy to see that Q and R centralize each other. Now the
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assertion can be easily proved by (3. 3) and (2. 4) "'-J (2. 8) .

We will explicitly determine all elements of order p in U4 (q). Since
U is a Sylow p-subgroup of U4 (q), it suffices to find all elements of
order p in U.

(3.6) The following is the list of all elements of order p which are
contained in the Sylow p-subgroup U= U1U2U3U4•

(i) the case when p = 2.
every nonidentity element in U2U3U4' and
every element of the form XI (a) x3 (aj3) X4 (0) , where a E F*;

j3,oEFo·
(ii) the case when P=3.

every nonidentity element in U2U3U4' and
every nonidentity element in U1U3U4.

(iii) the case when p ~ 5.
every nonidentity element in U.

Proof. By the assertion (3) in (3. 3) there exists a monomorphism
of U into S U4(q). For each element a of U, let A E S U4 (q) be the
matrix corresponding to a under this monomorphism. Then it is clear
that (A - I) 4 =0 holds, where I and 0 are the identity matrix and zero
matrix, respectively. On the other hand, F is a field of characteristic
p. Therefore, if p?::.5 then we have 0= (A-I)P=AP-I, which implies
that aP= 1. Hence (iii) holds.

An easy calculation yields (i) and (ii).

It is easy to show that X4 (1) and X3 (1) are not conjugate in U4 (q).
Hence there at least two conjugacy classes of elements of order p. In
particular, if q is even, that is, if p=2, then there are exactly two
conjugacy classes of involutions in U4 (q). By (3. 2) and (3.3) it is
easy to prove the following two propositions (cf. [3J).

(3.7) Let C be the centralizer of X4 (1) in U4 (q). Then

C=ULU ULn2U2 c B2=BUBn2U2,

whereL={h1(tt)lttEF*,tti1=1}, and C is of order q6(q+1)2 or

~ q6 (q+ 1) 2 according as q is even or odd.

Moreover, U1U3U4 is a maximal normal p-subgroup of C, and
U2LU U2Ln2U2 is a complement of U1U3U4 in C.
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(3. 8) Let Cl be the centralizer of Xg (1) in U4(q). 'Then

Cl=UlU2UgU4JU UlU2UgU4Jh2( -l)nlUl c Bl=BU BnlUh

where

Ul = {Xl (a) la E F, a= -a},
J = {hI (A) lA E Fo*} U {hI (ft)hz(-l) 1ft E F*, [l=-ft}.

The subgroup U2U3U4 is a maximal normal p-subgroup of Ch and
UlJU UlJh2(-1)nlUl is a complement of U2U3U4 in Cl'

If q is even, then ICl I=q5 (q2-1) and

(UlJU UlJnlUl) ~ SL2(q) =PSL2(q).

If q==l (mod 4), then ICII =q5(q2-1).

If q==-l (mod 4), then ICll = ~q5(q2-1).

4. Involutions and their centralizers in U4 (q) , where
q-l (mod 4)

In this section we assume that q==l (mod 4), and we will determine
the centralizers of involutions in U4 (q). We have

d= (4, q+ 1) =4, IU4(q) I= ~ q6(q2_1)2(qz+1) (q3+1).

(4. 1) Let C be the centralizer of the involution h2(-1) in U4(q).
Then the following hold:

(1) We have
C= U2U4HU U2U4Hnl U U2U4Hn2U2 U U2U4Hnln2U2 U U2U4Hn2nl U4

U U2U~nln2nlU4U UzU4Hn2nln2U2U4U U2U4H(nln2)ZU2U4,
IC I=q2(qZ-1)Z(q+1).

(2) Let
D=U2U4HU U2U~nZU2UU2U~nln2nlU4UUZU~(nln2)2U2U4'

E=U2U4KU U2U4Kn2U2U U2U4Knln2nlU4U U2U4K(nlnZ)2U2U4,
Q=U2H 2 U U2H2n2UZ,
R=nlQnl=U4H4U U4H4nln2nlU4, H4=nlH 2nh K=HzH4'

Then D and E are normal subgroups of C such that
i) C~D~E=QR, IC: DI =2, ID: El =q+1,

ii) C=D<nl), D=EHh and DjE is cyclic of order q+1,
iii) E is the central product of Q and R, where

Q~R~SL2(q) ~SU2(q)·
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Proof· By (2.8) the centralizer of h2(-1) in U is U2U4, and by
(2. 7), N centralizes h2 ( -1) . From this fact and (2. 9) we can prove
the assertion (1). Using (3.5) and (2.5) "-' (2.9), we can easily prove
the assertion (2).

(4.2) Let Cl be the centralizer of the involution hl (~o)h2 (-1) in
U4(q), where ~o is a primitive 4-th root of unity in F*. Then the
following hold:

(1) We have

Cl = UlH U UlHnl U1U UlHn2nln2 U UlH (n1n2) 2 Ub

ICll =q2(q4-1) (q-1).
(2) Let

D l = U1HU U1Hnl Ub P= U1H 1U UlH1n1 U1.
Then Dl and P are normal subgroups of Cl such that

i) Cl~D1~P, IC l : Dd =2, IDl : PI =q-1,
ii) Cl=Dl(n)=P(H2, n) and D l=PH2 are semidirect products,

where n= (nln2) 2 and (H2, n) is dihedral of order 2(q-1).
iii) P ~ P SL2(q2) .

Proof. The centralizer of h l (~o) h2(-1) in U is Uh and the centra­
lizer of this involution in N is H(nh n2n1n2). Hence the assertion (1)
holds. Now we can prove the assertion (2) by using (3. 2) .

(4.3) There are exactly two conjugacy classes of involutions in U4(q)
with representatives h2( -1) and hl (~o)h2 (-1). Thus the centralizer of
any involution in U4(q) is conjugate in U4(q) to either C or Cl.

This result is known (cf. [4J). Thus we will sketch the proof. Let
2m be the highest power of 2 dividing q-1, that is, 2m Ilq -1. Then

2m\\IFo*l, 2m+111IF*I, 22m+311IN!, 22m+3111U4(q)\.

Hence any Sylow 2--subgroup of N is a Sylow 2-subgroup of U4 (q),
and so every involution of U4 (q) is conjugate in U4 (q) to an involution
in N. The following is the list of all involutions in N.

(l) h2 ( -1);
hl (f.t)h2(-1)nh f.tEF*;

hl(f.t)h2(f.tji)n2nln2, f.t EF*;
hi (f.t) h2(A.) (nln2) 2, AEFo*,

f.t E F*, ji = - f.t.

(ll) hl (~o); hi (~o)h2 ( -1) ;
hi (f.t) nh f.tEF*;

hi (~o)h2(A.)n2' AEFo*;
hl(~OA.)h2(A.)nln2nh AEFo*;
hi (f.t) h2(- f.tji) n2nln2, f.t E F*;
hi (f.t)h2 (J..) (nln2)2, f.t, AEFo*·
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Now we can show that involutions in (I) are conjugate in U4 (q) . to
hz(-1) , and involutions in (II) are conjugate to hI (~o) hz(-1).

5. Involutions and their centraIizers in U4 (q) , where
q== -1 (mod 4)

In this seCtion we assume that q -1 (mod 4), and we will determine
the centralizers of involutions in U4 (q).

Assume that q==-l (mod 4). Then

d= (4, q+1) =4, IU4(q) 1= i q6(q2_I)Z(qz+1)(q3+1).

(5. 1) Let C be the centrali~er of the involution hz(-1) in U4(q).
Then the following hold:

(1) We have
C=UzU4HU UzU4HnlU UzU~nzUzU UZU~nlnZUZU UzU4HnznlU4

U UzU4HnlnZnl U4U UzU4HnznlnZUZU4 U UzU4H(nlnZ)2UzU4,

ICI= ~qZ(qZ-1)Z(q+1).

(2) Let
D=UzU#U UzU~nzUzUUZU~nlnZnIU4UUZU~(nlnZ)ZUZU4'

E= UzU4KU UzU4KnzUzU UzU4KnlnZnlU4 UUzU4K(nlnZ)ZUZU4,
Q= UzHz UUzHznzUz,
R = nlQnl= U4H4U U~~lnZnlU4,
H4=nlHznb K=HzH 4.

Then D and E are normal subgroups of C such that

i) C~D~E=QR, IC: DI=2, ID: EI= ~ (q+1),

ii) C=D<nl)=E<L,nl)' D=EL, EnL=<hz(-l),
where L= {hl(.u) l.u E F*, .uzCq+I)=l} is cyclic of order q+1, and
<L, nl) is a dihedral group of order 2(q+1).

iii) E is the central product of Q and R, where

Q ~ R ~ SLz(q) ~ SUz(q).

Proof. The proof is essentially same as the proof of (4.1). We will
prove the part ii) of (2).

Let w be a primitive element of F. Then F*=<w) and Fo*=<wq+l).

Let ~=wicq-I). Since q==-l (mod 4), two integers ~ (q-1) and
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q+ 1 are relatively prime. Hence we have F*=<~) XFo*. This implies
that HI=LXLb where

L=(hl(~)= {hl(u) l,u E F*, ,u2(q+D=I}, L I= {hI (A) lA E Fo*}.

Therefore, H=KL and KnL=(h2(-I). Note that h2(-I)=hl(~0)'

where eo is a primitive 4-th root of unity which is in (~). Since the
involution nl inverts hI (~), the group (L, nl) is a dihedral group of
order 2(q+l).

Using the above results we can prove the assertion ii).

(5.2) Assume that q ==-1 (mod 8). Let ~ be a primitive 8-th root
of unity in F* and let ~0=';2. Then hl(~)n2 is an involution of U4(q).

Let Cl be the centralizer of the involution hI (~) n2 in U4(q). Then the
following hold:

(1) We have
Cl = UoHoU Uo;} U UOH Onln2nl UoU UO;}nln2nl Uo,

ICri = ~q3(q+l) (q2-1) (q3+1) ,

where

Uo= {xI(a)x3(-~Oa)x4(o) la E F,o E Fo},
H o= {hI (,u) h2(A.) l,u E F*, A E Fo*, ,uit=A2},
;}= {X2 ({3) hI (,u) h2(A) n2x2 ({3) l,u E F*, AE Fo*, f3EFo, /lit (132+ 1) =A2}•

(2) Let

T= HoU;},
T o= {hI (A) h2(A) , x2(f3)hl((f3-~0)-IA)h2(A)n2x2(f3) lA., 13 E Fo*}.

Then
Cl = UoTU UoTnln2nl Uo, UoT= UoHoUUo;}.

Moreover, UoT, T, To are subgroups of a matcimal parabolic subgroup
B2=BUBn2U2 such that UoT::::Jr-::::JTo and Uo is normal in UoT.

(3) Let

D I = UoTo U UoT Onln2nl Uo.

Then D I is a normal subgroup of Cl such that

i) CI=DIJ, D l nJ=(h2(-1), and

CrlDI is cyclic of order ~ (q+l), where J= {hl(,u) l/l E F*, ,ufi=l} is

a cyclic group of order ~ (q+ 1), and

ii) DI~SU3(q).



214 Seung Ahn Park

Proof. Since q ==-1 (mod 8), we have ~~= 1. Hence hI (~) n2 is an
involution, by (2. 7).

Using (2.9) and (2. 10) we can prove the assertion (1). By definition·
of T, we have UoT= UoHoU Uo~ and it is the centralizer of hI (~) n2 in
B2• Hence UoT is a subgroup. Now it is easy to show that T and To
are subgroups and Uo is normal in UoT.

Suppose shat f.lJt=).2, where f.l E F* and), E F o*. If we set 1)=f.l).-1,
then we have f.l=).1j and 1ftj=I. Suppose that f.lJt(f32+1) =).2 where
f.lEF*, ).EFo* and f3EFo. Set 1)=f.l).-l(f3-~O). Since ~~o=l and
~o=-~o, we have 1)'ij=1 and f.l=(f3-~O)-l).1j. Let

H4=nlH2nl= {hI ().) h2().) lA E Fo*}, J= {hI (1) 11) E F*,1)'ij=1}.

Then the above results yield that H o=H4J and T=HoU;:j= Tool. Since
J normalizes Uo and centralizes both To and nln2nh the subgroup D l is
a normal subgroup of Cl. And we have Cl=DlJ and Dl nJ=H4nJ=
(h2 ( -1)>. where h2 ( -1)=hi (~o).

Finally we can show that there exists an isomorphism of D l onto
SUs (q) which sends

Xl (a)xs( -~Oa)x4(0), hI (A)h2().), X2(f3) hI (f3-~o) -ln2x2(f3), nln2nl

into

respectively.
This completes the proof of (5. 2).

(5.3) If q == 3 (mod 8), then there is exactly one conjugacy classes
of involutions in U4(q) with representative h2(-1).

If q==-1 (mod 8), then there exactly two conjugacy classes of
involutions in U4(q) with representatives h2(-1) and hI (~) n2.

The above result is known (cf. [4J). Thus we will sketch the proof.
Assume that q==-1 (mod 4) and let 2m be the highest power of 2

dividing q+1, that is, ~lIq+ 1. Then

m~2, 211IFo*l, ~+1I1IF*I, ~+sIlINI, 2Sm+l lflCI, 2Sm+1111 U4 (q) I.
Hence any Sylow 2-subgroup of C is a Sylow 2-subgroup of U4 (q) •
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Thus any involution of U4 (q) is conjugate in U4 (q) to an involution
of C. The following is the list of all involutions in C.

(1)
hz(-l) ;
X2(f3) X4(p,jif3)hl (p,)nh {3EFo, f.lEF*;
Xz(- (3) X4 ( -0) hI (p,) h2(p,ji) nZnInZ.'l:2 ({3) X4 (0), {3, 0E Fo, f.l E F*;
X2( -(3)X4( -o)hl (p,)hz(A) (nInz)2X2 ({3)X4 (0) , {3,oEFo, f.lEF*,

AE F°*, ji = ± f.l.
(n) only when m;:::: 3 (e is a primitive 8-tk root in F*)

X2( - f3)k l (~)h2(jl)n2x2({3), (3E Fo, AE Fo*;
X4( -0)hl(~A)h2(A)nIn2nIx4(0), oEFo, AEFo*.

Note that
m=2~ q=3 (mod 8); m;::::3~ q--l (mod 8).

Now we can show that every involution in (1) is conjugate in U4 (q) to
h2 ( -1), and every involution in (n) is conjugate in U4 (q) to hI (e) n2'
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