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ON FINITE SIMPLE GROUPS
—THE UNITARY GROUPS U,(q)

SEUNG AHN PARK

1. Introduction

Any finite simple group of Lie type has a (B, N)-pair, and such a
simple group can be studied by using its (B, N)-pair structure. For
example, the projective special unitary group U,(q), where ¢ is a
prime power, is isomorphic to the twisted Chevalley group 2A4,-,(g) of
type A,-;, and so this group can be studied in this manner.

In this paper we study the simple group U,(g) by using its (B, N)-
pair structure. As a matter of fact, this study will be continued to the
study on U,(g). We will explicitly determine elements of 24;(g) and
give a specific isomorphism of U,(q) onto 2A3(g). Using this infor-
mation, we will study some special subgroups contained in maximal
parabolic subgroups of U,(g) and find all elements of order p, where
g=p° and p is a prime. We will also explicitly determine the structure
of the centralizers of involutions in-U,(g). NoteTthat

Vi@ | =5¢*@—1) @+1) (@*—1),

where d=(4, ¢+1), and that
d=1 & g¢=2¢ and p=2;
d=2 &> ¢=1 (mod 4); d=4 < g¢=-1 (mod 4).

The determination of involutions and their centralizers in Chevalley
groups over a finite field of characteristic 2 has been studied in [1].
And a characterization of U(q), where g is odd, has been done in [4]
by using matrix presentation. In this paper we treat Uy(g) as the twi-
sted Chevalley group 245(g) and every element of subgroups are explicitly
expressed. This paper contains some results in the author’s paper [3].

Received May 14, 1986.
This research has been supported by the Ministry of Education.

— 2017—



202 Seung Ahn Park

This paper is organized as follows. In section 2 detailed description
for the (B, N)-pair structure of 24;(g) is given. An explicit isomorph-
ism of U,(g) onto 2A43(g) is also given. In section 3 we prove properties
of some special subgroups which are contained in maximal parabolic
subgroups of U(g). And elements of order p in U,(g) is also determined.
In section 4 and section 5 the structure of the centralizers of involutions
in U,(g) are explicitly determined, where g=1 (mod 4) or g=—1 (mod
4).

The notation and terminology in this paper are standard. They are
taken from [6] for the general finite groups and from [2] for the
Chevalley groups.

2. The groups U,(g)

Let F be a finite field with g2 elements, where g=p¢ and p is a prime.
For each element a<F define @ by @=a?. Then the map o : F—F,
o(@)=a&, is an automorphism of order 2, and Fy= {a € Fla=a} is
a subfield of F with ¢ elements.

Let £ be a non—degenerate Hermitian product on the four-dimensional
vector space F* defined by

Sy, a3 as, as), (B, B2 B3, Br)) =a1Ba—asfstasfo—asf,
and let J € Maz,(F) be the matrix associated with f. Then the general
unitary group GUy(g) may be identified with the set of all matrices
(@r;j) € Maty(F) such that (a;;)*J(a;;) =J, where (@;;)*= (@;;). Thus

‘SU4(¢1) ={A € GUy(g) |det A=1}, U,(q)=PSUs(q)=8Us(q)/Z,

where Z={diag{A, 4,4, A} |A1=1,A¢=1}, and Z is cyclic of order
d=(4, g+1).

The group U,(g) is isomorphic to the twisted Chevalley group 24;(q)
of type As. We will use the same notation as in [2] to define elements
of 245(g). Let @ be the set of roots of the simple Lie algebra .£ of
type Az over the complex number field, and let []={a, 5, ¢} be a fun-
damental system in @. The positive system of roots in @ is then &=
{a,b,¢, at+b, b+ec, atbtc}. Let B=1{h, rc]l; e, r€ D} be a
standard Chevalley basis for £, For r,s € ® we define N, ; by [e,, e,]=
N, ¢,+. Then N, ; is either 41 or 0 according as s is a root or not.

Let z,.(a), %.(A), h(x) and =z, be elements of the Chevalley group
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Asz(g®) as defined in [2], where r € ®* and «, A€F. The elements
k() and n, act on & as follows:
(*) ]’l,- (2) 'h.s:hs: nr'hs—;hw, (5) ’ s € ﬂ s
h, ('D 'es:RA”es Ry €s=Np, s€w, (s s EQ,
where w, is the reflection determined by r and A,$=-2(E‘r—’:))—. The signs

of the structure constants N, , may be chosen arbitrarily for the pairs
(a, 8), (b,¢), (a,b+c¢), and then the structure constants for all pairs are
uniquely determined. We will set

(**) Na,b:L Nb,cz_ls Na,b+c:_1'
Then it is easy to prove the following three propositions.
(2.1) We have N, :=Npsc,o=Nysp, =1, Np =N, 05=—1.
If r,s,r+s € @*, then 3, =N, and 1,,=79,~,=—1.
We have
ﬂa,c:ﬂa,a+b+c=77b,a+b:ﬂb,b+c=77b.a+b+c:1’
Nea ™ Teyarpre= 1o Naratb=Nepsc™ — 1.

(2.2) For any r € 97 we have
z, (@) z, () =z, (a+B), h D)k () =h ().
If r,s € @* are distinct, then
[x,(a), xs(ﬁ)jzzrﬂ(Nr:saaB)’ Ehr(l)s ks(/“)]=1'
And for any r,s € O we have
h, (D) zs (@) b, () 1=z, (A%r50) .
(2.3) For any r,s € ®* we have
na (@) n =z, o (@),  nh (D, 1=h(y),
where y is a character defined by y(t) =AT with T=A, >

The nontrivial symmetry p of the Dynkin diagram for Aj; is given by
p(a) =c, p(b)=>b, p(c)=a. Thus S;={a,c} and S;={b} are orbits in
[T under the action of p. Define w,=w,w, and w,=w,. Then

w(a)=—a, w®) =a+bte, wilc)=—c

wy(a) =a-+b, wy(h)=—b, wy (c) =b+c.
Therefore, w; and w, are involutions satisfying (wjw;)*=1. Set
S;={a+b, b+c} and Sy={a+b+c}. Then we have

w1(S)=—81, w1(Sy) =38, w1 (S3) =83,
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w3 (S =83, wy(S3) =—8s, w2(Sy) =S4
Hence the Weyl group W of the twisted Chevalley group 243(g) is
generated by w; and w;, and W=<{w;, w,) is dihedral of order 8.
Now we define elements of 243(g) as follows:

z1(a) =z, (@) z. (@), a € F; z2(B) =z3(B), B € Fo;

x3(T) =xa+b(7’)xb+c(;f)! TE F; $4(5) =xa+b+c(5)r RS FO;

hl(ﬂ) =ha(ﬂ)hc(ﬁ): 2 = F*; hZ(Z) :hb(2)7 z = FO*;

Ny =NNe, Np=1Npy
where F*=F— {0} and Fy*=F,— {0}.

Using (*), (**) and (2.1)~(2.3), we can easily prove the following
properties of 2A43(g).

(2.4) Let

Uy={z1(a) la € F}, U= {z:(p) |8 € Fo},

Us={zs(7) lr € F}, Us=1{2400)10 € Fo}, U=U,U,U3U,.
Then Uy, Uy, Us, Uy are elementary abelian p—subgroups such that | U] =
VU3l =¢? and | U, =|Uyl=q. The multiplication in each U; is given
by z:(@)z; (B) =z;(af).

The subgroup U is a Sylow p-subgroup of 2A43(q) of order ¢f with
center Z(U)=U,. Every element of U is uniquely expressed as a product
z1( @)z (D z3(1)24(). We have

Lz1(@), 22(8) 1=z3(af) z4(a@B), [z5(7), z1(a)]=z4(aF+ar),
and all other types of commutators between elements of the various U; are
trivial.

(2.5) Let
Hy={h, () | uEF*}, Hy={h:(D) A€ F*},
H=H;H,, d=(4,q+1).
Then Hy is a cyclic group isomorphic to F*/{—1)> and
h(@h () =h(ue); M) =h{) S p==1p.
The subgroup Hy is a cyclic group isomorphic to Fy* and
ha (D) hy (A1) =hy(AX') 5 hy(A) =1 2=1.
The subgroup H is abelian of order %(qz—-l) (g—1), and every ele-
ment of H can be expressed as a product Ry () ha(2).
If d=1 or d=2, then H=H;XH,.
If d=4, then HiN Hy= {1, ky(—1)}. In general, we have
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b (@Wh(A) =1 < =1 and (P=A

(2.6) Let B=UH. Then B is the normalizer of U in 2A3(q), and

the action of h=h,()hy(R) € H on U is given by
klzy (@) =z (%Aa), b 2y (B) b=z, (ufid~%6),
Rz () h=23 (1 BA7Yy), Rz (B) h=x4 (w1 i 7%0).

(2.7) Let M={ny, ny) and N=HM. Then H=B(\N and H is nor-

mal in N. The action of M on H is given by
niky () m=hy (1), nihg (D) my="hy (D) h2(2),
ny Yy (W) ma=h1 (W) he (i), 7y~ hy (A) my=hy (27Y).

There is an isomorphism of N/H onto W which sends n,H into w, and
n.H into ws.

If q is even, then M is a dihedral group of order 8 genmerated by
two involutions ny and ny satisfying (nmny)t=1. Moreover, MNH=1.
If q is odd, then M is a nonabelian group of order 16 such that

m?=1, nl?f=hy(—1), (mny)*=1,

Z(M) =<hy (1)) XL (mn2) 2, M'={[ny, n,1), MNH={hy(—1)).

(2.8) The elements ny and ny transform the elements of U in the
following manner:
mzi(@)m=z;(—a Db (@ Ymz,(—al), a#0;
ny iz (B ny=x5(— B ) b (B V) npza (—671), B+#0;
mzy(B)m=x4(—F), mzs(Pm=23(~7), nx4(0) m=2,(—0),
nylxy (@) my=x3(@), melzs(P)ne=2z1(—7), ny7224(0) ny=1,(9).
(2.9) The subgroups B and N form a (B, N)-pair of 2A3(q). The
group 2A3;(q) is the disjoint union of eight double cosets of the form
BnB, where n runs through the transversal
N = {1, ny, na, myny, nyny, nynany, npmyny, (miny) %
of {hy(—1)) in N. In fact, we have BuB=BnU,, where U, is given
in the following table:
n: 1m my mny mgmy mmemy  memmg  (myny)?
Un . 1 Ul Uz U2U3 U1U4 U1U3U4 U2U3U4 U1U2U3U4.
Every element of 2A3(q) can be uniquely expressed as a product bny,
where b < B, neN and y € U,.

(2.10) There exists an isomorphism of 2A3(q) onto Uy(q) =SU(q)/Z
which sends
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la 1 7 é
2@ o | 1212 w@®a®u® me | 1077z,
1 1
Lo 1
k() into K i Z, hy(Q) into | 4 7t Z,
gt 1
1 1 .
ny into _1, 1 Z, my into 1 1 Z.
-1 1

Note that if ¢ is even then (2.4)~(2.9) are identical with (2.1)~
(2.6) in [3].

Using (2.4)~(2.10) we can construct a group which is isomorphic
to SU.(g) in the following way:

(2.11) Let Hy={k(t) | & F*} be a cyclic group isomorphic to F*,
whose multiplication is defined by hy () hy () =k, (uyt’). Let H=H, X H,
and define the relations between hy(¢) and z;(c), ni, ny to be the same
as those relations between hy (1) and z;(a), ny, ny in (2.4)~(2.8).

Then the group G={U, H, ny, nyy is isomorphic to SU(q). Moreover,
an isomorphism of G onto SUs(q) can be defined as in (2.10) by repla-
cing hi() by hi(¢) and omitting Z.

3. Parabolic subgroups and elements of order p

From now on we identify U;(q) with the twised Chevalley group
245(g), where g=p¢ and p is a prime. The letter which is introduced
in section 2 will keep its meaning throughout this paper.

In this section we will discuss some properties of maximal parabolic
subgroups of Uy(g). We also explicitly determine all the elements of
U,(g) of order p and the centralizers of some elements of order p.

(38.1) Let
B,=BUBnU;, B,=BlUBnU,.
Then B; and By are mazimal parabolic subgroups of U,(q), and every
parabolic subgroups of Uy(qg) is conjugate to B, B;, B; or Us(g).

Proof. This follows from the (B, N)-pair structure of U,(g).
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(8.2) Let
BI=BUBn1U1, P1=UH1U UHlﬂlU, P=U1H1U U1H1n1U1.
Then the following hold:

(1) B, has a maximal normal p—subgroup U,UsU,, which is an elemen-
tary abelian p—subgroup of order q*. The subgroup U HU U HmU; is
a complement of U,UsUy in Bi.

(2) Py is a normal subgroup of By such that By=P,H; and B,/P; is
cyclic. And P is a complement of a normal subgroup U,U3Uy in Py.

Moreover, P = PSIL,{(g?).

Proof. Using (2.4)~(2.9) we can easily prove the assertions. Note
that

by (2) “Yn1hy (2) =hy (A) ny.

It is easy to show that there exists an isomorphism of the group P
onto PSL;(g?) which sends z,(e), (), n; into

<1 6{>Z" (u #'1>Zl’ (—-1 1>Zl’

respectively. Here Z, denotes the center of SL,(¢%). Notice that the
above matricies are obtained from the corresponding matrices given in
(2.10) in a suitable way.

(3.3) Let
By;=BUBnyU;, Py=UH,UUHn,U,, Q=U,H,U U;Hyn,U,.

Then the following hold:

(1) B has a maximal normal p-subgroup U,UsU, of order ¢°. The
subgroup U,H UsHnyUs is a complement of U,UU; in B,.

(2) P, is a normal subgroup of B, such that B,=P,H, and B,/P; is
cyclic. And Q is a complement of a normal subgroup U,UsUy in P,.

(3) Py isomorphic to a subgroup of SU,(q) and

Q = SLy(g) = SUx(g).
Proof. The assertions can be proved by using (2.4)~(2.9). Note that
ki (1) “inghy (1) = ho (uiz) .

By (2.11) we can prove that there exists a monomorphism of P, into
SUi(g) which sends z, (@), 23(F)x3(7)z4(8), k2(A), m, into



208 Seung Ahn Park

la 1 v o 1 1

1 18—7 A 1
l1a) 1 ’ At op -1 ’
1 1 1 1

respectively. Using this monomorphism we can show that there exists
an isomorphism of @ onto SLy(q) which sends z,(8), A;(2), n, into

t 2 e ()

respectively. Hence we have @ = SLy(g) = SU,(q).
(8.4) Let
P=UHU UHn U, ny Pny=UsH;3\ UsHshy(—1)noninsUs,
where Hy=n;""Hyno= {hy () ho(ufp) |t € F*¥}. Then
P = ny"'Pny = PSLy(9?), {P,ny 'Pnyy="Uy(g).

Proof. The first assertion follows from (8.2). Recall that #," 1=
ho(—1)ny. Since [Us, Ui1=Uy, nUy=Usn,, H,H;=H, the subgroup
{P, ny~1Pnsy contains a maximal parabolic subgroup Bl—BUBnlUl
Hence we have (P, n,"1Pnyy=U,(g), by (3.1).

Compared to the subgroup P, the subgroup Q= U,H,U UpHon,U, has
a nice property as we can see in the next proposition. Note that if g is
even then h;(—1)=hy(1) =1, and if ¢ is odd then %;(—1) is an
involution. In any case n; is an involution.
(8.5) Let
Q=UH,U UyHony U3, R=mQm=UH;U UHmnon Uy,
where Hy=nHon,= {h1 (D) k() |ASFo*}. Then the following hold:
(1) We have
Q = R = SLy(g) = SUx(g), [Q, R]=1,
Z(Q)=Z(R)=QNR=H;NHy=<hy(—1)).
(2) Let E=QR and K=Hy;H,;. Ther E and K are subgroups and
we have
E= U2U4K U Ug U4Kﬂ2U2 U U2U4Kn1n2n1U4U U2U4K(n1n2)2U2U4.
If q is even, then E=QXR and |E|=g?(g?—1)2%
If q is odd, then E is the central product of @ and R such that
Z(B)=Z(@=Z(®) =(ha(=1), and |E|=5e*(*—1)%

Proof. It is easy to see that @ and R centralize each other. Now the
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assertion can be easily proved by (3.3) and (2.4)~(2.8).

We will explicitly determine all elements of order p in Uy(g). Since
U is a Sylow p-subgroup of U,(g), it suffices to find all elements of
order p in U.

(3.6) The following is the list of all elements of order p which are
contained in the Sylow p-subgroup U=U,U,U3U,.
(i) the case when p=2.
every nonidentity element in U,U3Uy, and
every element of the form x,(a)x3(af)x4(6), where a € F*;
,8, IS Fo.
(ii) the case when p=3.
every nonidentity element in U,UzUy, and
every nonidentity element in U,UsU,.
(iii) the case when p=>5.
every nonidentity element in U.

Proof. By the assertion (3) in (3.3) there exists a monomorphism
of U into SU;(g). For each element a of U, let A & SU,(q) be the
matrix corresponding to a under this monomorphism. Then it is clear
that (A—1I)4=0 holds, where I and 0 are the identity matrix and zero
matrix, respectively. On the other hand, F is a field of characteristic
p. Therefore, if p=>5 then we have 0=(A4—1)?=A?—1, which implies
that a?=1. Hence (ii1) holds.

An easy calculation yields (i) and (ii).

It is easy to show that z4(1) and z;(1) are not conjugate in U,(g).
Hence there at least two conjugacy classes of elements of order p. In
particular, if g is even, that is, if p=2, then there are exactly two
conjugacy classes of involutions in U,(g). By (8.2) and (3.3) it is
easy to prove the following two propositions (¢f. [3]).

(8.7) Let C be the centralizer of x,(1) in Uy(q). Then
C= ULU UL?lez [ Bz=BUBn2U2,
where L={h, (1) | € F*, ufi=1}, and C is of order ¢°(qg+1)% or
—;—qs (g+1)2 according as q is even or odd.

Moreover, U,U3Uy is a mazimal normal p-subgroup of C, and
Us LU UsLny Uy is a complement of U,U3U, in C.
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(3.8) Let Cy be the centralizer of z3(1) in Uy(g). Then
Ci=UUU3UJU U,U,U3UJho(—1)n,U; © By=BU Bn, Uy,
where

U,={z(a) |lea € F, a=—a},
J={h DA€ Fo*} U (@) b(—1) g € F*, i=—y}.
The subgroup U,UzUy is a maximal normal p—subgroup of Ci;, and
U,JU U Jhe (— 1) 0 Uy is a complement of UyUsUy in C.
If q is even, then |Ci|=q¢°(¢®—1) and

(0JU UyJJnUy) = SLy(g) =PSLy(q).
If ¢=1 (mod 4), then |C1]=¢°(®?—1).
If g=—1 (mod 4), then 1Ci| =1g*(—1).

4. Involutions and their centralizers in U,;(q), where
g=1 (mod 4)

In this section we assume that g=1 (mod 4), and we will determine
the centralizers of involutions in U,(g). We have

A=+ =4, U@ | =55~ D)*+D) (@+1D).

(4.1) Let C be the centralizer of the involution hy(—1) in Uy(q).
Then the following hold:
(1) We have
C=U2U4HU U2U4H721 U U2U4H7Z2U2U U2U4Hn1n2U2U U2U4H722721U4
U UUHmnany U U UpUHngnynyU,U, U UpUgH (nynp)2 U Uy,
[Cl=¢*(?—1)2%(g+1).
(2) Let ‘
D= U2U4HU U2U4Hn2U2U U2U4Hn1n2n1U4U U2U4H(n1nz)2U2U4,
E= U2U4KU U2U4K7l2U2U U2U4Kﬂ1nzn1U4U U2U4K(7l1n2)2U2U4,
Q=U,H,U UH3ny Uy,
R=nQn;=UH,U UsHynyngn, Uy, Hy=nyHyny, K=H,H,.
Then D and E are normal subgroups of C such that
i) CODDE=QR, |C:D|=2, |D: E|=q+1,
ii) C=D<{ny), D=EH;, and D/E is cyclic of order q+1,
iii) E is the central product of @ and R, where
Q=R=SL,(q) =SU;(g)-
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Proof. By (2.8) the centralizer of h(—1) in U is U,U,, and by
(2.7), N centralizes hy(—1). From this fact and (2.9) we can prove

the assertion (1). Using (3.5) and (2.5)~(2.9), we can easily prove
the assertion (2).

(4.2) Let Cy be the centralizer of the involution hy(£q)hy(—1) in
Ui(g), where & is a primitive 4-th root of unity in F*. Then the
Sollowing hold:

(1) We have

Cl= UlHU UlHn]_ U1 U U1Hn2n1n2 U U1H<ﬂ1n2)2U1,
IC11=¢*(¢*—1) (¢—1).
(2) Let
D]_:UIHU UlHnlUl, P=U1H1U UIHlnlUl.
Then D, and P are normal subgroups of Ci such that
1) C;oDyoP, |Cy: D=2, |Dy: Pl=¢q—1,
1) C,=D{n)=P{Hy,n) and D,=PH, are semidirect products,
where n=(mny)? and {H,, n) is dihedral of order 2(¢—1).

iii) P = PSL,(g?.

Proof. The centralizer of h;(&y)h2(—1) in U is U;, and the centra-
lizer of this involution in N is H<{nj, nynynyy. Hence the assertion (1)
holds. Now we can prove the assertion (2) by using (3.2).

(4.3) There are exactly two conjugacy classes of involutions in U,(q)
with representatives hy(—1) and hy(Eg)hy (—1). Thus the centralizer of
any involution in Uy(q) is conjugate in Uy(q) to either C or C,.

This result is known (cf. [4]). Thus we will sketch the proof. Let
27 be the highest power of 2 dividing ¢—1, that is, 27|lg—1. Then
2n[|Fo*|, 2% F*|, 22*3|||N|, 22»*3|||U,(q)].
Hence any Sylow 2-subgroup of N is a Sylow 2-subgroup of U,(q),

and so every involution of U,(g) is conjugate in U,(g) to an involution
in N. The following is the list of all involutions in N.

@ k(-1); (ID ko5 h1(E)ha(—1);
hi(@) he(—1)n;, pEF*; hi(Wny, peF*;
by (1) ho (u2) ngmyng, pEF*; h1 () ha(A) my, AE Fo*;
h1 (ﬂ) hz (2) (nlnz) 2, e Fo*, hl (802) }lz (2) n1nany, ic Fo* 5
LEF*, p=—p. hy () ko (— ) nomyng, pEF*;

hy (1) o () (m1m5) 2, p, AE Fy*.
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Now we can show that involutions in (I) are conjugate in U,(g) to
ky(—1), and involutions in (II) are conjugate to &; (&) k2(—1).

5. Involutions and their centralizers in U,(q), where
g=—1 (mod 4)

In this section we assume that g=—1 (mod 4), and we Wlll determine
the centralizers of involutions in Uy(g).

Assume that g=—1 (mod 4). Then
d=(4,q+1) =4, |Us(@) =7 ¢*(@—D*(@+1D) (@+1).

(5.1) Let C be the centralizer of the involution hy(—1) in Uy(q).
Then the following hold :
(1) We have
C= U2U4HU U2U4H7l1 U U2U4Hn2U2 U U2U4Hﬂ1ﬂ2U2 U U2U4Hn2n1U4
U U UgHnyngn, U U UyUsHnangna U Uy U Uy U H (yng) 2UR Uy,

ICl=34*(g*~D)2(g+1).

(2) Let
D=U,UHU UUsHnyUz U UpUHnyngn Uy U U ULH (myng)2 U, Uy,
E=U,U KU U,UKnyUz U UyUKnynon, Ug U U UK (mym5) 2UR U,
Q=UH,U U,H;n,U,,
R=nQn,=UH,U UHminon, Uy,
H4=n1H2n1, K=H2H4. ’
Ther D and E are normal subgroups of C such that

i) CODDE=QR, |C:D[=2, ID:El———(qH)

ii) C=D{nyp=E{L,n;), D=EL, EﬂL=<hz( 1),
where L={h () | € F*, 29*V=1} is cyclic of order q+1, and
{L,ny) is a dihedral group of order 2(g+1).
iii) E is the central product of @ and R, where
Q = R = SLy(q) = SU,(g).
Proof. The proof is essentially same as the proof of (4.1). We will

prove the part ii) of (2).
Let ® be a primitive element of F. Then F*={(w) and Fo*=<{w*).

Let é=w?@ P, Since g=—1 (mod 4), two integers %(q—l) and
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g+1 are relatively prime. Hence we have F*={¢) XF,*. This implies
that Hl'—"—'LXLl, where

L= E))={nw |pe F*, p2@P=1}, Li={kn(D |2 F*}.
Therefore, H=KL and KN L=<{Ah(—1)). Note that hy(—1) =4k, (&),

where &, is a primitive 4-tk root of unity which is in ¢£). Since the

involution =, inverts %;(£), the group <{L,n;) is a dihedral group of
order 2(g+1).

Using the above results we can prove the assertion ii).

(5.2) Assume that q=—1 (mod 8). Let & be a primitive 8-th root

of unity in F* and let E,=8&2. Then hi(&)ny is an involution of U,(q).

Let Cy be the centralizer of the involution hy(E)ny in Uy(q). Then the
following hold :

(1) We have
C1= UoHo U Uog U U0H0n1n2n1 UO U Uogr’nlnznl Uo,

IGl=t¢@+1) @-D @+D,
where
Up={z1(@) 23(—Eo) 2,(0) la € F,0 € Fy},
Hy={h () k2 (D) | € F*, A € Fo*, ppp=12%,
F= {22 (B b1 (1) b2 (A) myz, (B) | € F*, A € F*, BE Fo, pfi(B2+1) =23
(2) Let
T= Ho U g!
To={h1i(Dha (D), z2(B)h1((B—E§0) 1) ha(R) maz2(B) |2, B € Fy*}.
Then
C1=UOTU UoTﬂlﬂgnon, U0T= UoHoU Uog.
Moreover, UyT, T, Ty are subgroups of a maximal parabolic subgroup
By;=B\ BnyUs such that UyT>T>Ty and Uy is normal in U,T.

(3) Let
Dy=U, Ty U Uy Tonynan, U,
Then D, is a normal subgroup of C, such that
1) Ci1=DyJ, D,;NJ=<Xhy(—1)), and

C1/ D is cyclic of order —}i—(qﬁ—l), where J={h; (1) ¢ € F*, pp=1} is

a cyclic group of order -%(q-l—l), and
i) Dy=SUs(g).
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Proof. Since g=—1 (mod 8), we have £&£=1. Hence A;(¢)n, is an
involution, by (2.7).

Using (2.9) and (2.10) we can prove the assertion (1). By definition -
of T, we have UyT=U H,U UyF and it is the centralizer of A,(E)ny in
B,. Hence U,T is a subgroup. Now it is easy to show that T and T
are subgroups and Uj is normal in U,T.

Suppose shat pi=42, where y € F* and A € Fy*.  we set p=pa-1,
then we have pg=27 and %7=1. Suppose that pE(82+1)=212 where
usF*, A€F,* and BeF, Set 7p=pi1(8—&). Since &E;=1 and
Ey=—&o, we have 77=1 and g=(8—&) 'Ay. Let

Hy=mHm= (D h(D) 12 € Fp*}, J={u( |y € F*, g7=1}.

Then the above results yield that Hy=H,J and T=H,U F=TyJ. Since
J normalizes U, and centralizes both T, and #y7sm;, the subgroup D, is
a normal subgroup of C;. And we have C;=D;J and D;NJ=H NJ=
$hz(—1)), where h2(—1)=hy(&5).

Finally we can show that there exists an isomorphism of D; onto
SU;(g) which sends

5] (a) z3(— 500-’) x4 (5) s I (1) hy (1) sy L2 (ﬁ) b1 (B—&0) "noxs (AB) s MMy
into
1 2a —anc_t+5 A (ﬁ—éo) -1 ‘B —1
1 — 60& ] 1 ’ £ ’
1 2 PHo ere) i

respectively.
This completes the proof of (5.2).

(5.3) If =3 (mod 8), then there is exactly ome conjugacy classes
of involutions in Uy(q) with representative hy(—1).

If ¢=-—1 (mod 8), then there exactly two conjugacy classes of
involutions in Uy(q) with representatives hy(—1) and hy(€)n,.

The above result is known (¢f. [4]). Thus we will sketch the proof.
Assume that g=—1 (mod 4) and let 2 be the highest power of 2
dividing ¢g+1, that is, 27|jg+1. Then

m>2, 2||Fo*|, 2=7Y[|F*|, 2=*3|||N], 28=*1}|C|, 28| Uy(g)|.
Hence any Sylow 2-subgroup of C is a Sylow 2-subgroup of U,(q).
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Thus any involution of Uy(g) is conjugate in U,(g) to an involution
of C. The following is the list of all involutions in C.

D
kz(""l) 5
2o (B xs () i () ny, BEF,, nsF*;
22 (—B) 24 (—08) by (t2) b (uD) namynazy (B) 24 (9), B,0EFy, pEF*;
-'52("'.8)-'1«'4("'5)’11 (/J)hz(z) (ﬂlnz)zxz(ﬁ)m(w’ B,6€Fy, nEF*,
A€ F*, a=-+u.
(II) only when m>3 (& is a primitive 8-tk root in F*)
z2(— B b1 (E) Ry (D) my25(B), BEFo, A€ Fo*;
x4 (—0) b1 (§2) by (A) mynoniz4 (), € Fy, A€ Fo*.
Note that
m=2¢> ¢g=3 (mod 8); m>3&> g=—1 (mod 8).
Now we can show that every involution in (I) is conjugate in U,(g) to
k2(—1), and every involution in (II) is conjugate in Uy(q) to Ay (&)n,.
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