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O. Introduction

A submanifold M of a Kaehlerian manifold M is said to be complex
or totally real if each tangent space to M is mapped into itself or the
normal space by the complex structure J of M. These two classes of
submanifolds are most typical examples among all submanifolds of M.
On the other hand, as a generalization to these submanifolds, a concept
of CR-submanifolds is introduced by A. Bejancu DJ and others. A
submanifold M of a Kaehlerian manifold (M, J) is called a CR-subma­
nifold if there is a differentiable distribution such that it is invariant
under J and the complementary orthogonal distribution is totally real.
Many subjects for CR-submanifolds were investigated from various
different points of view. In [2,4,5, 15J, A. Bejancu, B. Y. Chen,
M. Kon and K. Yano studied fundamental properties of CR-submanifolds
M in a Kaehlerian manifold. In particular, under the assumption that
the normal connection of M is flat or the second fundamental forms are
all commutative, some characterizations and some classifications of CR­
submanifolds with parallel mean curvature vector in a complex space
form were obtained (see [3,8, 10, 16, 17J), and, in previous paper [9J
totally real submanifolds with parallel normal section in a complex space
form were studied as a general case of [7J.

The purpose of this paper is to investigate the manifold structure of
CR-submanifolds in a complex space form in the case where the mean
curvature vector is parallel in the normal bundle.

1. CR-submanifolds of a Kaehlerian manifold

Let (M, G) be a Kaehlerian manifold of real dimension 2m equipped
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with an almost complex structure J and with a Hermitian metric tensor
G. Let M be covered by a system of coordinate neighborhoods {V, yA}
and denoted by GAB components of G and by JBA those of J. We then
have

(1.1) JABJBC= -OAC, GCDJBCJAD=GBA,

where here and in the sequel the following convention on the range of
indices are used, unless otherwise stated:

A, B, C, ... =1, ... ,n, n+l, ... ,2m;
h, i, j, =1, ..., n;
:1:, y, z, =n+1, ..., 2m.

The summation convention will be used with respect to those system of
indices. Since M is Kaehlerian, we get

(1.2) V BJCA=O,

where VB denotes the covariant derivative with respect to GBA. __
Let M be an n-dimensional Riemannian manifold covered by a system

of coordinate neighborhoods {U; x h} and immersed isometrically in M
by the immersion if> : M~M. When the argument is local, M need not
be distinguished from if> (M), and then the immersion if> can be repre­
sented by yA= yA (xh) and Bj = (BjA) are also n-linearly independent local
tangent vectors of M, where BjA=OjyA and OJ=ojoxj• 2m-n mutually
orthogonal unit normals Cz = (CzA) may then be chosen. The induced
Riemannian metric gji on the submanifold M is given by gji=GBCBjBBP
because the immersion if> is isometric. Therefore, by denoting by Vj the
covariant derivative of van der Waerden-Bortolotti formed with gji,
the equations of Gauss and Weingarten for M are respectively obtained:

(1. 3) VjBiA = hjiZCzA, VjCzA= - h/zBiA,

where hjiZ are the second fundamental forms in the direction of Cz and
I ed b h h -h °h_h Oh -G C BC A be" h .re at y j z- jiz!t - j/'lt gyz, gyz- BA y z mg t e metnc

tensor of the normal bundle, and (gH) = (gji)-l.

DEFINITION 1. 1. A submanifold M of a Kaehlerian manifold M of
real 2m dimension is called a CR-submanifold if there is a differentiable
distribution T: p~ TpcMp on M satisfying the following conditions,
where Mp denotes the tangent space at each point p to M:

(1) T is invariant under the complex structure J, i. e., JTp = T p for
each point p in M.

(2) The complementary orthogonal distribution Tl- : p ~ Tpl-CMp is
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totally real, i. e., JTi-CMp.l for each p in M, where Mp.l denotes
the normal space to M at p.

If dim Tp.l=O (resp. dimTp=O), then the CR-submanifold M is a
Kaehlerian submanifold (resp. totally real submanifold) of M. If dim
Tp.l=dim Mp.l, then M is said to be generic.

The transformation of BjA and CzA by the almost complex structure
J are represented in each coordinate neighborhood as follows:

(1. 4) JBABjB=f/BjA_JjxCzA,
(1. 5) JBACZB= JziBjA +fxYCl,

where fjj=G(JBj , Bi), J jx= -G(JBj. Cx), Jzj=G(JCz, Bj ) and fxy=G
(JCx, Cy). From these definitions the following equations

fjj+fij=O, Jjz=JXj , fxy+fyz=O

can be easily verified. By the properties of the almost complex structure,
it follows from (1. 4) and (1. 5) that

(1. 6) f/f/I = -o}+JjzJxh, fxYf/= -oz"+JztJ/"
(1. 7) f/JtY+Jjzf.,,Y=O, J/fth+fxYJyh= 0,

where f}=fjith, Jjz=JjygYZ and fzY=f:Jo"g"Y, and gY" is contravariant
components of gy,,'

By the way, the CR-structures on the submanifold M of the Kaehlerian
manifold M are characterized as follows ([15J):

LEMMA 1. 2. A necessary and sufficient condition for a submanifold M
of M to be a CR-submanifold is that the tensors f/ and Jjx satisfy

(1. 8) f/fd/+f/=O, JjZfij=O.

Accordingly it follows from (1. 6), (1. 7) and (1. 8) that

(1. 9) JjXfxY=O, f3/fy"f"w +fxw=O,

so the CR-submanifolds of a Kaehlerian manifold admit the f-structure
both on M and its normal bundle.

If the covariant derivative Vj is applied to (1. 4) and (1. 5) and if
the equation from (1. 1) to (1. 5) are taking account of, then the foll­
owing relations are obtained respectively:

(1.10) V·f·h=h· .xJ h-h·h J.xJ' J' x J x • ,

(1. 11) VjJjx=hjtXf/-hjiYfyX,
(1.12) Vj!xY=h/zJ/-hj/J/,

where hjjx=h/xgti = hj;Ygyx'
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In the sequel, the ambient Kaehlerian manifold M is assumed to be
of constant holomorphic curvature 4c and of real dimension 2m, which
is called a complex space form and denoted by M2m(c). Then the
curvature tensor R of M2m(c) is given by

RDCBA=C(GDAGCB-GCAGDB+JDAJCB-JCAJDB-2JDCJBA).

Thus, from (1. 3), (1. 4), (1. 5) and (1. 8) it follows that equations of
Gauss, Codazzi and Ricci for M are respectively obtained:

(1.13) Rkjih=C(gkhgji-gjhgki+ikhfji-fjhfki-2fkjfih)
+huXhjix-hjhXhkix,

(1.14) &7khji'x-&7jhkix=C(-fjiJkX+ikiJjX+2ikjJiX) ,

(1.15) Rkjyx=C(Jk:r;Jjy-JjzJky-2!kjfyx) +hktxh/y-hjtxhly,

where R kjih and Rkjyx are the Riemannian curvature tensor of M and
that with respect to the connection induced in the normal bundle of M,
respectively. The Ricci tensor of M can be expressed as

(1.16) Rji=c(n+2)gji-3cJ/'Jzi+hXhjix-hjrxh{x,

where hx= gjihjix.

2. Parallel tensor in the normal bundle

Let M be an n-dimensional CR-submanifold in a complex space form
M2m(c) of constant holomorphic curvature 4c. A normal vector field
e= (ex) is called a parallel section in the normal bundle if is satisfies
&7jex=O, and furthermore a tensor field F on M is said to be parallel
in the normal bundle if it is in the normal bundle and &7jF vanishes
identically.

In this section, the f-structure in the normal bundle is assumed to be
parallel. In this case, (1. 12) turns out to be

(2.1) hjtxJtY-hj/Jxt=O.

REMARK. Notice that f y
X vanishes identically if M is a generic sub­

manifold of a Kaehlerian manifold M. Thus, a generic submanifold
of M has always a trivial f-structure in the normal bundle.

Let 9 be a mean curvature vector field of the submanifold. Namely,
it is defined by

9=giihjiXCx/n= hXCx/n,

which is independent of the choice of the local field of orthonormal
frames {Cx }. Since the fact that the mean curvature vector is parallel
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in the normal bundle is assumed, we may choose a local field {ex} in
such a way that Y= aCn +h where a= IIYII is constant. Because of the
choice of the local field, the parallelism of Y yields

(2.2) {hx=O, :r~n+2,
h*=na,

where here and in the sequel the index n+ 1 is denoted by *. Since
the f-structure in the normal bundle is parallel, it is easily seen from
the first equation of (1. 9) and (1. 11) that hzfzYfyx= O. Because f/
is the f-structure in the normal boundle, it follows that hZfzx=O, which
together with (2. 2) gives

(2.3) f*x=O.

Therefore the second relationship of (1. 6) gives rise to

(2.4) JjxJi*=ox*'

Since the mean curvature vector Y is normal, the curvature tensor
R kjyx of the connection in the normal bundle shows that Rkj*x vanishes
identically for any index x. Thus the Ricci equation (1. 15) yields

(2.5) hktXh/*-hj/hkt*=C(JhJjX-Jj*Jkx)

by means of (2. 3) .

On the other hand, because of (1. 6), (1. 8), (1. 14) and (2. 4), we
have

(2.6) IIVkhj/-C( IkjJi*+lkiJj*) 11 2= IIVkhji* 112-2c2(n-JjzJ jz).

Now, the mean curvature vector being parallel in the normal bundle,
the Laplacian f1h ji* of hji* is given by

Llhji* = Rjsh/* - Rkjihhkh* +cVk(J*kJij -Jj * fi k- 2Ji* f/)·

Accordingly, by the straightforward calculation, the last equation can
be reduced to

(2.7) .Jh··* =c(n+3)h··* -ch*g··+h*h·th·t* -hkhxhkh*h··JI JI JI J I JIX
+c(3h*Jj*Ji* -6hst*f/f/ -3hit*J/Jjz
-h· XJ tJ·*-2h· xJ*tJ. +h· XJ tJ. -h· xJ tJ.*)

It x J Jt IX It * JX Jt X I •

3. Normal f-structure on the submanfold

This section is devoted to investigating the manifold structure of the
CR-submanifold with parallel f-structure in the normal bundle in M2m

(c). The f-structure induced on M is said to be normal ([13J, [17J),
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if the second fundamental forms hij X and the f-structure induced on the
submanifold M are commutative each other, that is, h/xftk_f/htkx=O
for any indices, or equivalently

(3.1) hjtXfl+hitxf/=O.

Transforming (3. 1) by hi and taking account of (1. 6), we find

(3.2) -hjkx+hjtxJ/JkY+hitY/hi=O.

By the properties of CR-structure on M, it follows from the last equa­
tion that

(3.3) hjtxJ:/=py%xJ/,

where py%x is defined by Py%x=hjixJ/J%i and hence it satisfies

(3.4) py%Yzw=O.

Denoting P xy%= g%Wpxyw, we see that P xy% is symmetric for all indices,
because of a direct consequence of (2.1). When x=n+1 in (3.3), we
have

(3.5) hj / J/=Py%*Jjy.

Differentiating (3. 5) covariantly along M and substituting (1. 11) and

(1. 12), we find

(17khjt*) J/+h/* (hks% fl- hklfy%)
= (17kP y%*) JjY+P y%* (hktYf/ - hkjwfwY),

from which, together with (1. 14), (2. 4), (2. 5) and (3. 1) it follows

2 (ch/J%*- hjt*h/%fks+P y%*hjlht)

= CVkPy%*) JjY- (VjPy%*) JkY.

By a consequence of the simple calculation, the equation above is reduced
to

(3.6) h-t*h·tX=P x*h,,%+cox*(g._-J.%J. )
'J t % 'J' J' J ,%

+ (p xp w* - p pwx*) J.%J.Yyw % y%W J t·

This and (2. 5) mean that

PzwxpyW*_ p ywxp%w*=c(oz*J/Jix-oy*J/Jix).

Thus, p %yx being symmetric for all indices, it follows that

(3.7) PZYXpyx*=pxPzx*+coz*(JixJix-1),

(3.8) P zx*P/*=PzYXpz** +c(J/Jix-% x*),

where px=p%=. Using above two relationships, (3.6) implies that

(3.9) hj/h/*=Pz**hji%+c(gji-J/J j *).
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By taking account of some equations obtained above, the equation (2.7)
then turns out to be

.dhj ;* =c( - 2hj;*+2h*Jj*J;* +2Pyz*JjYJ;z- PzJ/Jj*-PzJjzJ;*) ,

which together with (3.6) and (3.9) implies

(3.10) hi;*.dhj;*=2c2(JjxPx-n).

By combining (2. 6) and (3. 10), it follows that

(3.11) .d (hj ;*hii*) = 211f7khj;* -c (ikJ;* +h;Jj*) 11 2•

From (2.6) and (3.11) we conclude

PROPOSITION 3.1. Let M be an n-dimensional compact CR-submanifold
with parallel f-structure in a complex Euclidean space Cm. If the mean
curvature vector is parallel and if the f-structure induced on M is normal,
then the second fundamental tensor A* is parallel.

REMARK. Let M be a totally real submanifold with parallel f-structure
in the normal bundle in M2m(c). It is shown that if the non-trivial
mean curvature is parallel, then A * is parallel. This fact is proved in
[7J and [9J.

REMARK. Let M be a generic submanifold with flat normal connection
in Cm. It is known in [8J that if the mean curvature vector is parallel
and if the f-structure induced on M is normal, then the second funda­
mental form of M is parallel.

We next prove the following:

THEOREM 3.2. Let M be an n-dimensional compact CR-submanifold
imbedded in et 2m-dimensional comple.'¥: Euclidean space Cm. Assume that
an f-structure in the normal bundle is parallel and that the mean curvature
vector of M is parallel. If the f-structure induced on M is normal, then
M is a product submanifold M 1 X'''XMa , where Ma (a=l, ... , a) is a
compact na-dimensional submanifold imbedded in Cmaand Ma is contained
in a hypersphere in ClTta•

Proof. Since the ambient space is complex Euclidean, it can not admit
compact minimal submanifolds. So, the mean curvature vector 9 is
non-trivial. By the way, 9 being parallel, Proposition 3.1 says that
the second fundamental form hj ;* in the direction of 9 is parallel, that
is, f7khj;*=O on M. When a function hm for any integer m~l is given
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hm=hi/2*hi2is* ...himi1*,
it is easily seen that hm is constant on M for any integer m, which
means that each eigenvalue of the shape operator A * is constant on M,
because hj / is parallel. By Ph ... , Pa mutually distinct eigenvalues of
A * are denoted. Let nh ••• , na be their multiplicities. Thus, distinct
eigenspaces Da Ca=l, ..•, a) of A* define parallel distributions on M;
say A *X = PaX for all X in Da. Then, de Rham's decomposition theorem
tells us that M can be written as a product of Riemannian manifolds
MIX ... XMa where the tangent bundle of Ma corresponds to Da• Since
the mean curvature vector 9- is parallel in the normal bundle, each shape
op~rator Ay satisfies [A*, Ay] =0. This implies that AyDacDa lIor any
indices y and a. By means of Moore's theorem [12J, M=MIX···XMa
is a product submanifold imbedded in Cm=Cmlx···xCma• Let 11:a CD)
be the component of g in the subspace Cm". Then lea Cg) is a parallel
mean curvature vector of Ma in Cm", and Ma is umbilical with respect
to 11:aCD). Therefore it follows that Ma lies in a small hypersphere in
Gm" which is orthogonal to 11:aCD). For datails, see [4J, for instance.
Hence it is a compact minimal submanifold in the hyperSphere. This
completes the proof of the theorem.

COROLLARY 3.7. Let M be a compact generic submanifold with para­
llel mean curvature vector in Cm. If the f-structure induced on M is
normal, then M is the same type as that of Theorem 3. 2.

REMARK. Let M be a compact totally real submanifold with parallel
mean curvature vector in Cm. It is shown in [7J and [9J that if the
f-structure in the normal bundle is parallel, then M is the same type
as that of Theorem 3. 2.

REMARK. Let M be a complete generic submanifold of Cm with flat
normal connection and with parallel mean curvature vector. It is already
seen in [8J that if the f-structure induced on M is normal, then M is
a product of spheres.
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