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0. Introduetion

A submanifold M of a Kaehlerian manifold M is said to be comples
or totally real if each tangent space to M is mapped into itself or the
normal space by the complex structure J of M. These two classes of
submanifolds are most typical examples among all submanifolds of M.
On the other hand, as a generalization to these submanifolds, a concept
of CR-submanifolds is introduced by A. Bejancu [1] and others. A
submanifold M of a Kaehlerian manifold (M,J) is called a CR-subma-
nifold if there is a differentiable distribution such that it is invariant
under J and the complementary orthogonal distribution is totally real.
Many subjects for CR-submanifolds were investigated from various
different points of view. In [2,4,5,15], A. Bejancu, B. Y. Chen,
M. Kon and K. Yano studied fundamental properties of CR-submanifolds
M in a Kaehlerian manifold. In particular, under the assumption that
the normal connection of M is flat or the second fundamental forms are
all commutative, some characterizations and some classifications of CR-
submanifolds with parallel mean curvature vector in a complex space
form were obtained (see [3,8, 10, 16, 17]), and, in previous paper [9]
totally real submanifolds with parallel normal section in a complex space
form were studied as a general case of [7].

The purpose of this paper is to investigate the manifold structure of
CR-submanifolds in a complex space form in the case where the mean
curvature vector is parallel in the normal bundle.

1. CR-submanifolds of a Kaehlerian manifold

Let (M,G) be a Kaehlerian manifold of real dimension 2m equipped
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with an almost complex structure J and with a Hermitian metric tensor
G. Let M be covered by a system of coordinate neighborhoods {U, y4}
and denoted by G4z components of G and by Jz4 those of J. We then
have

(1- 1) JABJBC= —5AC, GCDJBCJAD=GBA,
where here and in the sequel the following convention on the range of
indices are used, unless otherwise stated:

A BC,..=1,...,n ant+l,..,2m;

hi,7,...=1,...,%;

z, 92, ...=n+1, ..., 2m.
The summation convention will be used with respect to those system of
indices. Since M is Kaehlerian, we get

(1.2) VaJci=0,
where [z denotes the covariant derivative with respect to Gg,.

Let M be an n—dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {U; z?} and immersed isometrically in M
by the immersion ¢ : M—M. When the argument is local, M need not
be distinguished from ¢(M), and then the immersion ¢ can be repre-
sented by y4=y4(z*) and B;=(B;4) are also n-linearly independent local
tangent vectors of M, where B;4=09;y4 and 9;=0/0z’. 2m-n mutually
orthogonal unit normals C,=(C,4) may then be chosen. The induced
Riemannian metric g;; on the submanifold M is given by g;;=G3zcB;BB;¢
because the immersion ¢ is isometric. Therefore, by denoting by ; the
covariant derivative of van der Waerden-Bortolotti formed with gj;,
the equations of Gauss and Weingarten for M are respectively obtained:

1.3) ViBA=h;*CA, V;C;A=—hi.B4,
where k;;# are the second fundamental forms in the direction of C, and
related by 2%, =h;;,8" =Fk;?8%g 4z, £42=GpaC,PC,4 being the metric
tensor of the normal bundle, and (g#)=(g;;)~%

DEFINITION 1.1. A submanifold M of a Kaehlerian manifold M of
real 2m dimension is called a CR-submanifold if there is a differentiable
distribution T : p — T, M, on M satisfying the following conditions,
where M, denotes the tangent space at each point p to M:

(1) T is invariant under the complex structure J, i.e., JT,=T, for

each point p in M.
(2) The complementary orthogonal distribution T : p — T,LC M, is
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totally real, i.e., JT,'cM,* for each p in M, where M,* denotes
the normal space to M at p.

If dim T, =0 (resp. dimT,=0), then the CR-submanifold M is a
Kaehlerian submanifold (resp. totally real submanifold) of M. If dim
T,t=dim M,!, then M is said to be generic.

The transformation of B;4 and C,4 by the almost complex structure
J are represented in each coordinate neighborhood as follows:

(1 4) JBABjBijiB;A—JjICxA,

(1. 5) JBACxB‘_:inBiA +fzyCyA:
where f;;=G(JB;, B;), Jjz=—G(JB;,C,), J,j=G(JC,, B;) and f,,=G
(JC,, C,). From these definitions the following equations

fji+fij=0, Jj.t:Jz’js f:cy+fyz=0

can be easily verified. By the properties of the almost complex structure,
it follows from (1.4) and (1.5) that

(1.6) Fitft= =8P+ T20 .k, f2f = =07+t 7,

1.7 FrI2+J5 =0, JAr+Hf2Th=0,
where f;*=f;;g%, J;*=J;,g% and f,?=f,.g%, and g’ is contravariant
components of g,,.

By the way, the CR-structures on the submanifold M of the Kaehlerian
manifold M are characterized as follows ([15]):

LEMMA 1.2. A necessary and sufficient condition for a submanifold M
of M to be a CR-submanifold is that the tensors fit and J;* satisfy

(1. 8) f:jtftsfsi‘*}“fji:(), szfij:().
Accordingly it follows from (1.6), (1.7) and (1.8) that
(l- 9) szfz:y:'oa fxyfyzfzw +fzw:O’

so the CR-submanifolds of a Kaehlerian manifold admit the f-structure
both on M and its normal bundle.

If the covariant derivative ; is applied to (1.4) and (1.5) and if
the equation from (1.1) to (1.5) are taking account of, then the foll-
owing relations are obtained respectively:

(1.10) V;fit=h; 20— bt J o,
(1.11) Vidi==hi&f it —h;?f 7,
(1- 12) ijxy:hjtthy—hjtszts

where hjiz= kjt 28t hj 8 ya-
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In the sequel, the ambient Kaehlerian manifold M is assumed to be
of constant holomorphic curvature 4¢ and of real dimension 2m, which

is called a complex space form and denoted by M?2=(¢). Then the
curvature tensor R of M?"(c) is given by

Rpcpa=¢(GpaGes—GeaGpe+Ipales—Jcalps—2T et sa)-

Thus, from (1.3), (1.4), (1.5) and (1.8) it follows that equations of
Gauss, Codazzi and Ricci for M are respectively obtained:

(1- 13) Rkjih=6'(gkhgji'—gjhgki‘l‘fkhf}i'—fjhfki_2fkjfih)

+huRiiz— hin Rz

(1.14) Vihii®— Vb =c(—fi i+ fud 5+ 2f1;d:5),

(1- 15) Rﬁjyx=c(Jk:ﬁy_‘fjx*]ky—szjfyz) +hktzhjty_hjtzhkty:
where Rgj;; and Ryj,, are the Riemannian curvature tensor of M and
that with respect to the connection induced in the normal bundle of M,
respectively. The Ricci tensor of M can be expressed as

(1.16)  Rj=c(n+2) gji—3cJ;* it Fhjiz—hjrohi s,
where h*=giih;;~.

2. Parallel tensor in the normal bundle

Let M be an n-dimensional CR-submanifold in a complex space form
M?m(¢c) of constant holomorphic curvature 4¢c. A normal vector field
&=(&%) is called a parallel section in the normal bundle if is satisfies
V;j&*=0, and furthermore a tensor field F on M is said to be parallel
in the normal bundle if it is in the normal bundle and p;F vanishes
identically.

In this section, the f-structure in the normal bundle is assumed to be
parallel. In this case, (1.12) turns out to be

(2.1) Bt —h; 2T =0,

REMARK. Notice that f,? vanishes identically if M is a generic sub-
manifold of a Kaehlerian manifold M. Thus, a generic submanifold
of M has always a trivial f—structure in the normal bundle.

Let § be a mean curvature vector field of the submanifold. Namely,
it is defined by

g =gjihj i x/ n‘_“hzcx/ n,
which is independent of the choice of the local field of orthonormal
frames {C,}. Since the fact that the mean curvature vector is parallel
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in the normal bundle is assumed, we may choose a local field {e,} in

such a way that §= aC,.;, where a=||f|| is constant. Because of the
choice of the local field, the parallelism of § yields

(2.9) {hziO, zzn+2,
=na,
where here and in the sequel the index #+41 is denoted by #*. Since
the f-structure in the normal bundle is parallel, it is easily seen from
the first equation of (1.9) and (1.11) that A*f,%f,.=0. Because f,*

is the f-structure in the normal boundle, it follows that A%*f,=0, which
together with (2.2) gives

(2.3) Se*=0.
Therefore the second relationship of (1.6) gives rise to
(2.4) J; o Ji* =3,

Since the mean curvature vector § is normal, the curvature tensor
Ryjy; of the connection in the normal bundle shows that Ry;,, vanishes
identically for any index z. Thus the Ricci equation (1.15) vyields

2.5) hkfhjt*'—hj,xhk‘*=C(Jk*ij—Jj*ka)
by means of (2.3).

On the other hand, because of (1.6), (1.8), (1.14) and (2.4), we
have

(2.6) N7ahji* —c(fujdi* Hfudi™) | P= 7 sh;i*||?— 22 (n—J; . J7%).

Now, the mean curvature vector being parallel in the normal bundle,
the Laplacian 4h;;* of h;;* is given by

Ahji* =R hs* — Ry jinh?** Lo i (Jobf i ;—Tia Fi—2Jix ;9
Accordingly, by the straightforward calculation, the last equation can
be reduced to

(2_ 7) Ahﬁ*::c(n—{-?))hﬁ*—L‘h*gji'l'h*hj,hi‘*—hkh"hkh*/zj,-x

+c(Bh*J;udix —6hy*f;5f it — 3R * It T;F
'—hitIJthj*_ZhthJ*tJix'{“hisz*tJj.z_hthJthi*)'

3. Normal f-structure on the submanfold

This section is devoted to investigating the manifold structure of the
CR-submanifold with parallel f~structure in the normal bundle in M?=
(¢). The f-structure induced on M is said to be nrormal ([13],[17]),
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if the second fundamental forms 4;;* and the f-structure induced on the
submanifold M are commutative each other, that is, h;j*2f,2—f;th 2=0
for any indices, or equivalently

(3~ 1) hjtzf it+hz‘t$fjt=0-
Transforming (3.1) by f# and taking account of (1.6), we find
(3.2 — b=+ b TP TR b E=0.

By the properties of CR-structure on M, it follows from the last equa-
tion that

(3- 3) hj &, +=P yszj 2,
where P,,” is defined by P,*=h;;*J,/J;7 and hence it satisfies
(3- 4) P yzz 22=0.

Denoting P,,.=g,,Pzy*, Wwe see that P,,, is symmetric for all indices,
because of a direct consequence of (2.1). When z=z+1 in (8.3), we
have '

(3.5) hi*J 2= Pt .

Differentiating (3.5) covariantly along M and substituting (1. 11) and
(1.12), we find

(P ahis™) T+ bt ™ (e [ — R f y2)
= (PiPy*) J7+ Py * (e f i — b j%f ),
from which, together with (1.14), (2.4), (2.5) and (3.1) it follows
2(ef1j0:* — s kit 5+ Py *h; Of i)
= FaPy*) J ;77— (T Py *) Jp.
By a consequence of the simple calculation, the equation above is reduced
to
(3.6) hji*hitt =P, *h; 2+ c0°* (g5, — J;*J ;)
4 (P y™P o — Py PP5%) 2T 0.
This and (2.5) mean that
PP % — PP 0* = (3,4J f T 5 — 3, J AT 7).
Thus, P,,, being symmetric for all indices, it follows that

(3- 7) szzPyx*zszzx*—l—caz* (Ji:t:']iz'— 1) s

(3' 8) Pzz*Pyz*sznyz** +¢ (inJi.z—ay*az*) s
where Ps=P,*. Using above two relationships, (3.6) implies that

3.9 Bit*hit* =P ;7 +c(gji— I * ;).



Compact CR-submanifolds with parallel mean curvature vector in a complex 197
space form

By taking account of some equations obtained above, the equation (2.7)
then turns out to be

Ah;*=c(—2h;;* +2h* J; ;4 + 2P, * J;9J 5 — P J = J;* — P J#J %),
which together with (3.6) and (3.9) implies

(3.10) RI* Ahj ;i =2¢%(J; .07 —n).
By combining (2.6) and (3.10), it follows that
(3.11) Ah; b ) =207 shy* — o fi, Ji* +Fudi®) |12

From (2.6) and (8.11) we conclude

PROPOSITION 3.1. Let M be an n-dimensional compact CR-submanifold
with parallel f-structure in a complex Euclidean space C™. I1f the mean
curvature vector is parallel and if the f-structure induced on M is normal,
then the second fundamental tensor A* is parallel.

REMARK. Let M be a totally real submanifold with parallel f-structure
in the normal bundle in M2"(¢). It is shown that if the non-trivial
mean curvature is parallel, then A* is parallel. This fact is proved in

[7] and [9].

REMARK. Let M be a generic submanifold with flat normal connection
in Cm. It is known in [8] that if the mean curvature vector is parallel
and if the f-structure induced on M is normal, then the second funda-
mental form of M is parallel.

We next prove the following:

THEOREM 3.2. Let M be an n-dimensional compact CR-submanifold
imbedded in a 2m-dimensional complex Euclidean space C™ Assume that
an f-structure in the normal bundle is parallel and that the mean curvature
vector of M is parallel. 1f the f—structure induced on M is normal, then
M is a product submanifold M;X -+ XM,, where M, (a=1,...,a) is a
compact n,~dimensional submanifold imbedded in C™a and M, is contained
in a hypersphere in C™..

Proof. Since the ambient space is complex Euclidean, it can not admit
compact minimal submanifolds. So, the mean curvature vector ¢ is
non—trivial. By the way, § being parallel, Proposition 3.1 says that
the second fundamental form h;;* in the direction of ¢ is parallel, that
is, Fzhj;*=0 on M. When a function A, for any integer m=1 is given
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by
hm=h; 2% h; i s* by B,

it is easily seen that A, is constant on M for any integer m, which
means that each eigenvalue of the shape operator A* is constant on M,
because k;;* is parallel. By gy, ..., #, mutually distinct eigenvalues of
A* are denoted. Let ny,...,n, be their multiplicities. Thus, distinct
eigenspaces D, (a=1, ...,a) of A* define parallel distributions on M;
say A*X=y,X for all Xin D,. Then, de Rham’s decomposition theorem
tells us that M can be written as a product of Riemannian manifolds
M;X...XM, where the tangent bundle of M, corresponds to D,. Since
the mean curvature vector § is parallel in the normal bundle, each shape
operator A, satisfies [A*, A,]=0. This implies that A,D,c D, for any
indices y and a. By means of Moore’s theorem [12], M=M;X---XM,
is a product submanifold imbedded in C7=Cm1X---XC™. Let z,(§)
be the component of § in the subspace C7. Then z,() is a parallel
mean curvature vector of M, in C™s, and M, is umbilical with respect
to 7,(#). Therefore it follows that M, lies in a small hypersphere in
Cm. which is orthogonal to z,(§). For datails, see [4], for instance.
Hence it is a compact minimal submanifold in the hypersphere. This
completes the proof of the theorem.

COROLLARY 3.7. Let M be a compact generic submanifold with para-
llel mean curvature vector in C™. If the f-structure induced on M is
normal, then M is the same type as that of Theorem 3. 2.

REMARK. Let M be a compact totally real submanifold with parallel
mean curvature vector in C7. It is shown in [7] and [9] that if the
f-structure in the normal bundle is parallel, then M is the same type
as that of Theorem 3.2.

REMARK. Let M be a complete generic submanifold of C» with flat
normal connection and with parallel mean curvature vector. It is already
seen in [8] that if the f-structure induced on M is normal, then M is
a product of spheres.
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