COMPACT CR-SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR IN A COMPLEX SPACE FORM

Dedicated to professor Y. Tashiro on his sixtieth birthday

U-HANG KI* AND HISAO NAKAGAWA

0. Introduction

A submanifold M of a Kaehlerian manifold \overline{M} is said to be complex or totally real if each tangent space to M is mapped into itself or the normal space by the complex structure J of \overline{M} . These two classes of submanifolds are most typical examples among all submanifolds of \overline{M} . On the other hand, as a generalization to these submanifolds, a concept of CR-submanifolds is introduced by A. Bejancu [1] and others. submanifold M of a Kaehlerian manifold (\overline{M}, J) is called a CR-submanifold if there is a differentiable distribution such that it is invariant under J and the complementary orthogonal distribution is totally real. Many subjects for CR-submanifolds were investigated from various different points of view. In [2, 4, 5, 15], A. Bejancu, B. Y. Chen. M. Kon and K. Yano studied fundamental properties of CR-submanifolds M in a Kaehlerian manifold. In particular, under the assumption that the normal connection of M is flat or the second fundamental forms are all commutative, some characterizations and some classifications of CRsubmanifolds with parallel mean curvature vector in a complex space form were obtained (see [3, 8, 10, 16, 17]), and, in previous paper [9] totally real submanifolds with parallel normal section in a complex space form were studied as a general case of [7].

The purpose of this paper is to investigate the manifold structure of *CR*—submanifolds in a complex space form in the case where the mean curvature vector is parallel in the normal bundle.

1. CR-submanifolds of a Kaehlerian manifold

Let (\overline{M}, G) be a Kaehlerian manifold of real dimension 2m equipped

Received April 16, 1986.

^{*} This research was partially supported by KOSEF.

with an almost complex structure J and with a Hermitian metric tensor G. Let \overline{M} be covered by a system of coordinate neighborhoods $\{\overline{U}, y^A\}$ and denoted by G_{AB} components of G and by $J_B{}^A$ those of J. We then have

$$(1.1) J_A{}^B J_B{}^C = -\delta_A{}^C, \ G_{CD} J_B{}^C J_A{}^D = G_{BA},$$

where here and in the sequel the following convention on the range of indices are used, unless otherwise stated:

$$A, B, C, ...=1, ..., n, n+1, ..., 2m;$$

 $h, i, j, ...=1, ..., n;$
 $x, y, z, ...=n+1, ..., 2m.$

The summation convention will be used with respect to those system of indices. Since \overline{M} is Kaehlerian, we get

$$(1.2) V_B J_C^A = 0,$$

where ∇_B denotes the covariant derivative with respect to G_{BA} .

Let M be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{U; x^h\}$ and immersed isometrically in \overline{M} by the immersion $\phi: M \to \overline{M}$. When the argument is local, M need not be distinguished from $\phi(M)$, and then the immersion ϕ can be represented by $y^A = y^A(x^h)$ and $B_j = (B_j^A)$ are also n-linearly independent local tangent vectors of M, where $B_j^A = \partial_j y^A$ and $\partial_j = \partial/\partial x^j$. 2m-n mutually orthogonal unit normals $C_x = (C_x^A)$ may then be chosen. The induced Riemannian metric g_{ji} on the submanifold M is given by $g_{ji} = G_{BC}B_j^BB_i^C$ because the immersion ϕ is isometric. Therefore, by denoting by V_j the covariant derivative of van der Waerden-Bortolotti formed with g_{ji} , the equations of Gauss and Weingarten for M are respectively obtained:

(1.3)
$$\nabla_{j}B_{i}{}^{A}=h_{j}{}_{i}{}^{x}C_{x}{}^{A}, \quad \nabla_{j}C_{x}{}^{A}=-h_{j}{}^{i}{}_{x}B_{i}{}^{A},$$

where h_{ji}^x are the second fundamental forms in the direction of C_x and related by $h_j^h{}_x = h_{jix}g^{ih} = h_{ji}^y g^{ih}g_{yx}$, $g_{yx} = G_{BA}C_y^BC_x^A$ being the metric tensor of the normal bundle, and $(g^{ji}) = (g_{ji})^{-1}$.

DEFINITION 1.1. A submanifold M of a Kaehlerian manifold \overline{M} of real 2m dimension is called a CR-submanifold if there is a differentiable distribution $T: p \to T_p \subset M_p$ on M satisfying the following conditions, where M_p denotes the tangent space at each point p to M:

- (1) T is invariant under the complex structure J, i.e., $JT_p = T_p$ for each point p in M.
- (2) The complementary orthogonal distribution $T^{\perp}: p \to T_p^{\perp} \subset M_p$ is

193

totally real, i.e., $JT_p{}^\perp \subset M_p{}^\perp$ for each p in M, where $M_p{}^\perp$ denotes the normal space to M at p.

If dim $T_{b}^{\perp}=0$ (resp. dim $T_{b}=0$), then the CR-submanifold M is a Kaehlerian submanifold (resp. totally real submanifold) of \overline{M} . If dim $T_{\mathfrak{p}}^{\perp} = \dim M_{\mathfrak{p}}^{\perp}$, then M is said to be generic.

The transformation of B_j^A and C_x^A by the almost complex structure J are represented in each coordinate neighborhood as follows:

(1.4)
$$J_B{}^A B_j{}^B = f_j{}^i B_i{}^A - J_j{}^x C_x{}^A,$$

(1.5) $J_B{}^A C_x{}^B = J_x{}^i B_i{}^A + f_x{}^y C_y{}^A,$

$$J_B{}^A C_x{}^B = J_x{}^i B_i{}^A + f_x{}^y C_y{}^A,$$

where $f_{ji} = G(JB_j, B_i), J_{jx} = -G(JB_j, C_x), J_{xj} = G(JC_x, B_j)$ and $f_{xy} = G(JC_x, B_y)$ (JC_x, C_y) . From these definitions the following equations

$$f_{ji}+f_{ij}=0, J_{jx}=J_{xj}, f_{xy}+f_{yx}=0$$

can be easily verified. By the properties of the almost complex structure, it follows from (1.4) and (1.5) that

(1.6)
$$f_j{}^t f_t{}^h = -\delta_j{}^h + J_j{}^x J_x{}^h, \ f_x{}^y f_y{}^z = -\delta_x{}^z + J_x{}^t J_t{}^z,$$

(1.7)
$$f_j{}^t J_t{}^y + J_j{}^x f_x{}^y = 0, \ J_x{}^t f_t{}^h + f_x{}^y J_y{}^h = 0,$$

where $f_j{}^h = f_{ji}g^{ih}$, $J_j{}^x = J_{jy}g^{yx}$ and $f_x{}^y = f_{xx}g^{xy}$, and g^{yx} is contravariant components of g_{vx} .

By the way, the CR-structures on the submanifold M of the Kaehlerian manifold \overline{M} are characterized as follows ([15]):

LEMMA 1.2. A necessary and sufficient condition for a submanifold M of \overline{M} to be a CR-submanifold is that the tensors f_j^i and J_j^x satisfy

(1.8)
$$f_j^t f_i^s f_i^i + f_j^i = 0, \ J_i^x f_i^j = 0.$$

Accordingly it follows from (1.6), (1.7) and (1.8) that

$$(1.9) J_j^x f_x^y = 0, f_x^y f_y^x f_z^w + f_x^w = 0,$$

so the CR-submanifolds of a Kaehlerian manifold admit the f-structure both on M and its normal bundle.

If the covariant derivative V_j is applied to (1.4) and (1.5) and if the equation from (1.1) to (1.5) are taking account of, then the following relations are obtained respectively:

$$(1.10) V_j f_i^{\ h} = h_{ji}^{\ x} J_x^{\ h} - h_j^{\ h}_{\ x} J_i^{\ x},$$

(1.11)
$$\nabla_{j}J_{i}^{x} = h_{jt}^{x}f_{i}^{t} - h_{ji}^{y}f_{y}^{x},$$

(1.12)
$$\nabla_{j} f_{x}^{y} = h_{j}^{t} {}_{x} J_{t}^{y} - h_{j} {}_{t}^{y} J_{x}^{t},$$

where $h_{jix} = h_{ji} g_{ti} = h_{ji} g_{vx}$.

In the sequel, the ambient Kaehlerian manifold \overline{M} is assumed to be of constant holomorphic curvature 4c and of real dimension 2m, which is called a complex space form and denoted by $M^{2m}(c)$. Then the curvature tensor \overline{R} of $M^{2m}(c)$ is given by

$$\bar{R}_{DCBA} = c(G_{DA}G_{CB} - G_{CA}G_{DB} + J_{DA}J_{CB} - J_{CA}J_{DB} - 2J_{DC}J_{BA}).$$

Thus, from (1.3), (1.4), (1.5) and (1.8) it follows that equations of Gauss, Codazzi and Ricci for M are respectively obtained:

$$(1.13) \quad R_{kjih} = c(g_{kh}g_{ji} - g_{jh}g_{ki} + f_{kh}f_{ji} - f_{jh}f_{ki} - 2f_{kj}f_{ih}) + h_{kh}^{x}h_{jix} - h_{jh}^{x}h_{kix},$$

$$(1.14) \nabla_k h_{ji}^x - \nabla_j h_{ki}^x = c(-f_{ij}J_k^x + f_{ki}J_j^x + 2f_{kj}J_i^x),$$

$$(1.15) \quad R_{kjyx} = c(J_{kx}J_{jy} - J_{jx}J_{ky} - 2f_{kj}f_{yx}) + h_{ktx}h_{j}^{t}{}_{y} - h_{jtx}h_{k}^{t}{}_{y},$$

where R_{kjih} and R_{kjyx} are the Riemannian curvature tensor of M and that with respect to the connection induced in the normal bundle of M, respectively. The Ricci tensor of M can be expressed as

(1. 16)
$$R_{ji} = c(n+2)g_{ji} - 3cJ_j^z J_{zi} + h^x h_{jix} - h_{jrx} h_{ir}^r$$
, where $h^x = g^{ji}h_{ji}^x$.

2. Parallel tensor in the normal bundle

Let M be an n-dimensional CR-submanifold in a complex space form $M^{2m}(c)$ of constant holomorphic curvature 4c. A normal vector field $\xi = (\xi^x)$ is called a parallel section in the normal bundle if is satisfies $\nabla_j \xi^x = 0$, and furthermore a tensor field F on M is said to be parallel in the normal bundle if it is in the normal bundle and $\nabla_j F$ vanishes identically.

In this section, the f-structure in the normal bundle is assumed to be parallel. In this case, (1.12) turns out to be

$$(2.1) h_{jtx}J^{ty} - h_{jt}{}^{y}J_{x}{}^{t} = 0.$$

REMARK. Notice that f_{y}^{x} vanishes identically if M is a generic submanifold of a Kaehlerian manifold \overline{M} . Thus, a generic submanifold of \overline{M} has always a trivial f-structure in the normal bundle.

Let \mathcal{J} be a mean curvature vector field of the submanifold. Namely, it is defined by

$$\mathcal{J} = g^{ji}h_{ji}^{x}C_{x}/n = h^{x}C_{x}/n,$$

which is independent of the choice of the local field of orthonormal frames $\{C_x\}$. Since the fact that the mean curvature vector is parallel

in the normal bundle is assumed, we may choose a local field $\{e_x\}$ in such a way that $\mathcal{J} = aC_{n+1}$, where $a = ||\mathcal{J}||$ is constant. Because of the choice of the local field, the parallelism of \mathcal{J} yields

(2.2)
$$\begin{cases} h^x = 0, & x \ge n+2, \\ h^* = na, \end{cases}$$

where here and in the sequel the index n+1 is denoted by *. Since the f-structure in the normal bundle is parallel, it is easily seen from the first equation of (1.9) and (1.11) that $h^z f_z{}^y f_{yx} = 0$. Because $f_y{}^x$ is the f-structure in the normal boundle, it follows that $h^z f_z{}^x = 0$, which together with (2.2) gives

$$(2.3) f_*^{x} = 0.$$

Therefore the second relationship of (1.6) gives rise to

$$(2.4) J_{ix}J^{j*} = \delta_x^*.$$

Since the mean curvature vector \mathcal{J} is normal, the curvature tensor R_{kjyx} of the connection in the normal bundle shows that R_{kj*x} vanishes identically for any index x. Thus the Ricci equation (1.15) yields

$$(2.5) h_{kt}{}^{x}h_{j}{}^{t*} - h_{j}{}^{x}h_{k}{}^{t*} = c(J_{k*}J_{j}{}^{x} - J_{j*}J_{k}{}^{x})$$

by means of (2.3).

On the other hand, because of (1.6), (1.8), (1.14) and (2.4), we have

$$(2.6) || \nabla_k h_{ji}^* - c (f_{kj} J_i^* + f_{ki} J_j^*) ||^2 = || \nabla_k h_{ji}^* ||^2 - 2c^2 (n - J_{jz} J^{jz}).$$

Now, the mean curvature vector being parallel in the normal bundle, the Laplacian Δh_{ji}^* of h_{ji}^* is given by

$$\Delta h_{ji}^* = R_{js} h_{is}^* - R_{kjih} h^{kh*} + c \nabla_k (J_*^k f_{ij} - J_{j*} f_{ik}^k - 2J_{i*} f_{jk}^k).$$

Accordingly, by the straightforward calculation, the last equation can be reduced to

(2.7)
$$\Delta h_{ji}^* = c(n+3)h_{ji}^* - ch^*g_{ji} + h^*h_{ji}h_i^{t*} - h_{kh}^*h^{kh*}h_{jix}$$

$$+ c(3h^*J_{j*}J_{i*} - 6h_{st}^*f_{j}^{s}f_{i}^{t} - 3h_{ii}^*J_{z}^{t}J_{j}^{z}$$

$$- h_{it}^*J_{x}^{t}J_{j}^* - 2h_{jt}^*J_{i}^*J_{ix} + h_{it}^*J_{x}^{t}J_{jx} - h_{jt}^*J_{x}^{t}J_{i}^*).$$

3. Normal f-structure on the submanfold

This section is devoted to investigating the manifold structure of the CR-submanifold with parallel f-structure in the normal bundle in M^{2m} (c). The f-structure induced on M is said to be normal ([13], [17]),

if the second fundamental forms h_{ij}^x and the f-structure induced on the submanifold M are commutative each other, that is, $h_j^{tx}f_t^h-f_j^th_t^{hx}=0$ for any indices, or equivalently

(3.1)
$$h_{it}^{x}f_{i}^{t}+h_{it}^{x}f_{i}^{t}=0.$$

Transforming (3.1) by f_k^i and taking account of (1.6), we find

$$(3.2) -h_{jk}^{x} + h_{jt}^{x} J_{y}^{t} J_{k}^{y} + h_{it}^{x} f_{j}^{t} f_{k}^{i} = 0.$$

By the properties of CR-structure on M, it follows from the last equation that

$$(3.3) h_{it}^{x}J_{z}^{t} = P_{vz}^{x}J_{i}^{y},$$

where P_{yz}^{x} is defined by $P_{yz}^{x} = h_{ii}^{x} J_{y}^{j} J_{z}^{i}$ and hence it satisfies

$$(3.4) P_{yz}^{x} f_x^{w} = 0.$$

Denoting $P_{xyz} = g_{zw}P_{xy}^w$, we see that P_{xyz} is symmetric for all indices, because of a direct consequence of (2.1). When x=n+1 in (3.3), we have

$$(3.5) h_{jt}^* J_z^t = P_{vz}^* J_i^y.$$

Differentiating (3.5) covariantly along M and substituting (1.11) and (1.12), we find

$$(\nabla_k h_{jt}^*) J_z^t + h_j^{t*} (h_{ksz} f_t^s - h_{kt}^y f_{yz})$$

$$= (\nabla_k P_{yz}^*) J_j^y + P_{yz}^* (h_{kt}^y f_j^t - h_{kj}^w f_w^y),$$

from which, together with (1.14), (2.4), (2.5) and (3.1) it follows

$$\begin{split} 2(cf_{kj}\delta_{z}^{\ *} - h_{jt}^{\ *}h_{s}^{\ t}{}_{z}f_{k}^{\ s} + P_{yz}^{\ *}h_{jt}^{\ y}f_{k}^{\ t}) \\ = (\nabla_{k}P_{yz}^{\ *})J_{j}^{\ y} - (\nabla_{j}P_{yz}^{\ *})J_{k}^{y}. \end{split}$$

By a consequence of the simple calculation, the equation above is reduced to

(3.6)
$$h_{jt}^* h_i^{tx} = P_z^{x*} h_{ji}^z + c \delta^{x*} (g_{ji} - J_j^z J_{iz}) + (P_{vw}^x P_z^{w*} - P_{vzw} P^{wx*}) J_i^z J_i^y.$$

This and (2.5) mean that

$$P_{zw}{}^{x}P_{y}{}^{w*} - P_{yw}{}^{x}P_{z}{}^{w*} = c(\delta_{z}{}^{*}J_{y}{}^{i}J_{i}{}^{x} - \delta_{y}{}^{*}J_{z}{}^{i}J_{i}{}^{x}).$$

Thus, P_{zyx} being symmetric for all indices, it follows that

(3.7)
$$P_{zyx}P^{yx*} = P^xP_{zx}^* + c\delta_z^*(J_{ix}J^{ix}-1),$$

(3.8)
$$P_{zx}^* P_y^{z*} = P_{zyx} P^{z**} + c(J_y^i J_{ix} - \delta_y^* \delta_x^*),$$

where $P^x = P_z^{zx}$. Using above two relationships, (3.6) implies that

(3.9)
$$h_{jt}^*h_i^{t*} = P_{z*}^*h_{ji}^z + c(g_{ji} - J_i^*J_j^*).$$

By taking account of some equations obtained above, the equation (2.7) then turns out to be

$$\Delta h_{ii}^* = c(-2h_{ii}^* + 2h^*J_{i*}J_{i*} + 2P_{yz}^*J_{j}^yJ_{i}^z - P_zJ_{i}^zJ_{j}^* - P_zJ_{j}^zJ_{i}^*),$$

which together with (3.6) and (3.9) implies

(3.10)
$$h^{ji*} \Delta h_{ji*} = 2c^2 (J_{i*}J^{j*} - n).$$

By combining (2.6) and (3.10), it follows that

(3.11)
$$\Delta(h_{ji}*h^{ji}*) = 2||\nabla_k h_{ji}* - c(f_{kj}J_i* + f_{ki}J_j*)||^2.$$

From (2.6) and (3.11) we conclude

PROPOSITION 3.1. Let M be an n-dimensional compact CR-submanifold with parallel f-structure in a complex Euclidean space C^m . If the mean curvature vector is parallel and if the f-structure induced on M is normal, then the second fundamental tensor A^* is parallel.

REMARK. Let M be a totally real submanifold with parallel f-structure in the normal bundle in $M^{2m}(c)$. It is shown that if the non-trivial mean curvature is parallel, then A^* is parallel. This fact is proved in [7] and [9].

REMARK. Let M be a generic submanifold with flat normal connection in \mathbb{C}^m . It is known in [8] that if the mean curvature vector is parallel and if the f-structure induced on M is normal, then the second fundamental form of M is parallel.

We next prove the following:

THEOREM 3.2. Let M be an n-dimensional compact CR-submanifold imbedded in a 2m-dimensional complex Euclidean space \mathbb{C}^m . Assume that an f-structure in the normal bundle is parallel and that the mean curvature vector of M is parallel. If the f-structure induced on M is normal, then M is a product submanifold $M_1 \times \cdots \times M_a$, where M_a $(a=1,\ldots,\alpha)$ is a compact n_a -dimensional submanifold imbedded in \mathbb{C}^{m_a} and M_a is contained in a hypersphere in \mathbb{C}^{m_a} .

Proof. Since the ambient space is complex Euclidean, it can not admit compact minimal submanifolds. So, the mean curvature vector \mathcal{J} is non-trivial. By the way, \mathcal{J} being parallel, Proposition 3.1 says that the second fundamental form h_{ji}^* in the direction of \mathcal{J} is parallel, that is, $\mathcal{V}_k h_{ji}^* = 0$ on M. When a function h_m for any integer $m \ge 1$ is given

by

$$h_m = h_{i_1}^{i_2} * h_{i_2}^{i_3} * \dots h_{i_m}^{i_1} *,$$

it is easily seen that h_m is constant on M for any integer m, which means that each eigenvalue of the shape operator A^* is constant on M, because h_{ji}^* is parallel. By $\mu_1, ..., \mu_{\alpha}$ mutually distinct eigenvalues of A^* are denoted. Let $n_1, ..., n_\alpha$ be their multiplicities. Thus, distinct eigenspaces $D_a(a=1,...,\alpha)$ of A^* define parallel distributions on M; say $A*X=\mu_a X$ for all X in D_a . Then, de Rham's decomposition theorem tells us that M can be written as a product of Riemannian manifolds $M_1 \times ... \times M_a$ where the tangent bundle of M_a corresponds to D_a . Since the mean curvature vector \mathcal{J} is parallel in the normal bundle, each shape operator A_v satisfies $[A^*, A_v] = 0$. This implies that $A_v D_a \subset D_a$ for any indices y and a. By means of Moore's theorem [12], $M=M_1\times\cdots\times M_\alpha$ is a product submanifold imbedded in $C^m = C^{m_1} \times \cdots \times C^{m_a}$. Let $\pi_a(\mathfrak{f})$ be the component of \mathcal{J} in the subspace C^{m_a} . Then $\pi_a(\mathcal{J})$ is a parallel mean curvature vector of M_a in C^{m_a} , and M_a is umbilical with respect to $\pi_a(f)$. Therefore it follows that M_a lies in a small hypersphere in C^{m_a} which is orthogonal to $\pi_a(f)$. For datails, see [4], for instance. Hence it is a compact minimal submanifold in the hypersphere. This completes the proof of the theorem.

COROLLARY 3.7. Let M be a compact generic submanifold with parallel mean curvature vector in \mathbb{C}^m . If the f-structure induced on M is normal, then M is the same type as that of Theorem 3.2.

REMARK. Let M be a compact totally real submanifold with parallel mean curvature vector in \mathbb{C}^m . It is shown in [7] and [9] that if the f-structure in the normal bundle is parallel, then M is the same type as that of Theorem 3.2.

REMARK. Let M be a complete generic submanifold of \mathbb{C}^m with flat normal connection and with parallel mean curvature vector. It is already seen in [8] that if the f-structure induced on M is normal, then M is a product of spheres.

Bibliography

1. A. Bejancu, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc., 69(1979), 135-142.

- Compact CR-submanifolds with parallel mean curvature vector in a complex space form
- 2. A. Bejancu, CR-submanifolds of a Kaehler manifold II, Trans. Amer. Math. Soc., 250(1979), 333-345.
- 3. A. Bejancu, M. Kon and K. Yano, CR-submanifolds of a complex space form, J. Differential Geometry, 16(1981), 137-145.
- B.Y. Chen, Geometry of submanifolds, Marcel Dekker, Inc., New York, 1973.
- 5. B. Y. Chen, CR-submanifolds of a Kaehlerian manifold I, J. Differential Geometry, 16(1981), 305-322.
- 6. B.Y. Chen, CR-submanifolds of a Kaehlerian manifold, II, J. Differential Geometry, 16(1981), 493-509.
- 7. B.Y. Chen, C.S. Houh and H.S. Lue, *Totally real submanifolds*, J. Differential Geometry, 12(1977), 473-480.
- 8. U-Hang Ki and J.S. Pak, Generic submanifolds of an even-dimensional Euclidean space, J. Differential Geometry, 16(1981), 293-303.
- 9. U-Hang Ki and H. Nakagawa, Compact totally real submanifolds with parallel mean curvature vector in a complex space form, J. Korean Math. Soc. 23(1986), 141-150.
- U-Hang Ki, J.S. Pak and Y.H. Kim, Generic submanifolds of complex projective spaces with parallel mean curvature vector, Kodai Math. J., 4 (1981), 137-155.
- 11. S. Kobayashi and K. Nomizu, Foundations of differential geometry I, Interscience Pub., 1963.
- 12. J.D. Moore, Isometric immersions of Riemannian products, J. Differential Geometry, 5(1971), 159-168.
- H. Nakagawa, On framed f-manifolds, Ködai Math. Sem. Rep., 18(1966), 293-306.
- 14. B. Smyth, Submanifolds of constant mean curvature, Math. Ann., 205(197 3), 265-280.
- 15. K. Yano and M. Kon, Differential geometry of CR-submanifolds, Geom. Dedicata, 10(1981), 431-444.
- K. Yano and M. Kon, CR-submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser Verlag, Boston, 1983.
- K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore, 1984.

Kyungpook University Taegu 635, Korea and University of Tsukuba Ibaraki 305, Japan