EPIMORPHISMS OF NONCOMMUTATIVE C*-ALGEBRAS

TAE GEUN CHO AND JAE CHUL RHO

1. Introduction

It was proved in Esterle [4] that every epimorphism from C(X) onto a Banach algebra is continuous. Here C(X) denotes the commutative C^* -algebra of continuous functions on a compact Hausdorff space X. Then Laursen has shown in [6] that an epimorphism from a C^* -algebra onto a commutative Banach algebra is necessarily continuous. However, it remains unknown whether every epimorphism of a C^* -algebra with noncommutative range is continuous.

In this note we study some properties of epimorphisms of C^* -algebras and give sufficient conditions for continuity of epimorphisms with non-commutative range. Let A be a C^* -algebra and B a Banach algebra. We show that for every epimorphism $\theta: A \to B$ the image of the closure of the kernel of θ coincides with the radical of B. Thus an epimorphism $\theta: A \to B$ is continuous if the radical of B is commutative. This result slightly generalizes the Laursen's result. Also it is shown that an epimorphism $\theta: A \to B$ is continuous if the radical B of B satisfies the condition A (B) is result generalizes corollaries 3.4 and 3.5 in A for epimorphisms of B*-algebras.

2. Preliminaries

Let A and B be Banach algebras. By a homomorphism $\theta: A \to B$ we mean a multiplicative linear map which maps A into B, and an epimorphism means a surjective homomorphism. For a homomorphism $\theta: A \to B$ the separating space of θ is a linear subspace of B defined by

 $\exists (\theta) = \{ b \in B : \text{ there is a sequence } a_n \to 0 \text{ in } A \text{ with } \theta(a_n) \to b \}.$ A homomorphism $\theta : A \to B$ is continuous if and only if $\exists (\theta) = \{0\}$ by

Received March 27, 1986.

This research is supported by MOE grant 1985.

the closed graph theorem, and it can be easily shown that $c(\theta)$ is a closed two-sided ideal of B if the range of θ is dense in B [10].

The radical of a Banach algebra is the intersection of all maximal modular left ideals of the algebra, and a Banach algebra is called semi-simple if the radical of the algebra contains only the zero element. If a Banach algebra has no maximal modular left ideal, the radical of the algebra is defined to be the algebra itself, in this case the Banach algebra is called a radical algebra. The radical of a Banach algebra is a closed two-sided ideal, and it is itself a radical algebra since the radical of a closed two sided ideal of a Banach algebra is the intersection of the ideal and the algebra [1: Coro. 24. 20].

An element a of a C^* -algebra is called self-adjoint if $a=a^*$, and a subalgebra is called self-adjoint if it is closed under involution. Every closed two-sided ideal of a C^* -algebra is known to be selfadjoint, and the quotient algebra of a closed two-sided ideal is also self-adjoint hence such a quotient algebra is itself a C^* -algebra with the quotient norm. It is well-known that a C^* -algebra is semisimple.

The most important positive result on the continuity of epimorphisms on which our results depend is the following theorem due to Johnson [5].

THEOREM (Johnson) Every epimorphism from a Banach algebra onto a semisimple Banach algebra is continuous.

3. Epimorphisms

LEMMA 1. Let A and B be the Banach algebras and $\theta: A \to B$ be an epimorphism. Then for each maximal modular left ideal M of B the inverse image of M is a maximal modular left ideal of A containing the kernel of θ .

Proof. Let M be a maximal modular left ideal of B. Then the inverse image $\theta^{-1}(M)$ is clearly a modular left ideal of B containing the kernel of θ . Let u be a right modular unit for $\theta^{-1}(M)$ and let M' be a proper left ideal of A containing $\theta^{-1}(M)$. Then $\theta(M')$ is a modular left ideal of B containing M. Suppose that $\theta(M') = B$. Then $\theta(u) \in \theta(M')$ and hence there is an element $a \in M'$ with $\theta(u) = \theta(a)$. Hence u must belong to M', which is impossible since it is a right modular unit for M'. Thus we have $\theta(M') \neq B$, hence by maximality of M, $\theta(M') = M$ and thus $M' = \theta^{-1}(M)$. Therefore $\theta^{-1}(M)$ is maximal.

The context of the following lemma is included in the proof of Proposition 25.10 of [1]. But we include another proof of the lemma since it is an easy consequence of Lemma 1.

LEMMA 2. Let A and B be Banach algebras and $\theta: A \to B$ be an epimorphism with the kernel K. Then $\theta(\overline{K})$ is contained in the radical R of B.

Proof. For each maximal modular left ideal M of B the closure \overline{K} of the kernel is contained in $\theta^{-1}(M)$ since $\theta^{-1}(M)$ is closed and contains the kernel K. Hence we have

 $\overline{K} \subset \cap \{\theta^{-1}(M) : M \text{ is a maximal modular left ideal of } B\}.$ Since $\theta(\cap \theta^{-1}(M)) \subset \cap \theta(\theta^{-1}(M))$ and $\theta(\theta^{-1}(M)) = M$, we have

$$\theta(\overline{K}) \subset \theta(\cap \theta^{-1}(M)) \subset \cap M = R$$

where intersection is taken over all maximal modular left ideals M of B.

In the following lemma we prove that for every epimorphism θ of a C^* -algebra with the kernel K, $\theta(\overline{K})$ is closed without assuming the continuity of θ .

LEMMA 3. Let A be a C*-algebra and B a Banach algebra. Then for each epimorphism $\theta: A \to B$ the image of the closure of the kernel of 0 is closed in B.

Proof. Let \overline{K} denote the closure of the kernel of θ and let $\pi: A \to A/\overline{K}$ be the quotient map. Now, we define a map

$$\bar{\theta}: B \to A/\bar{K} \text{ by } \bar{\theta}(b) = a + \bar{K}$$

where a is an element of A with $\theta(a) = b$. The map $\bar{\theta}$ is well-defined and clearly it is an epimorphism from B onto the C^* -algebra A/\bar{K} . By Johnson's theorem the epimorphism $\bar{\theta}$ is continuous and it has the closed kernel. To complete the proof it is enough to show that $\theta(\bar{K}) = \text{Ker}(\bar{\theta})$ where $\text{ker}(\bar{\theta})$ denotes the kernel of $\bar{\theta}$

If $b \in \theta(\overline{K})$ there is an $a \in \overline{K}$ with $\theta(a) = b$. Thus $\overline{\theta}(b) = a + \overline{K} = \overline{K}$, which implies that b belongs to $\ker(\overline{\theta})$. Conversely, let b be an element of $\ker(\overline{\theta})$, then $\overline{\theta}(b) = \overline{K}$. Let $a \in A$ with $\theta(a) = b$. By the definition of $\overline{\theta}$ we have $a + \overline{K} = \theta(b) = \overline{K}$. Hence $a \in \overline{K}$ and $b \in \theta(\overline{K})$.

THEOREM 4. Let A be a C*-algebra and B a Banach algebra with the radical R. For every epimorphism $\theta: A \to B$ we have $\theta(\overline{K}) = R$.

Proof. It is enough to show that $R \subset \theta(\overline{K})$ since we have already shown that $\theta(\overline{K}) \subset R$. Since $\theta(\overline{K})$ is a closed two-sided ideal of B the quotient algebra $B/\theta(\overline{K})$ is a Banach algebra. Let $\overline{\theta}: B \to A/\overline{K}$ be the epimorphism defined in Lemma 3 and let $\phi: B \to B/\theta(\overline{K})$ be the quotient map. Since the kernel of $\overline{\theta}$ and $\theta(\overline{K})$ coincide there exists a continuous isomorphism

$$\hat{\theta}: B/\theta(\overline{K}) \to A/\overline{K}$$

such that $\bar{\theta} = \hat{\theta} \circ \phi$. Since $\hat{\theta}$ maps $B/\theta(\bar{K})$ onto the C^* -algebra A/\bar{K} the Banach algebra $B/\theta(\bar{K})$ is semisimple.

On the other hand, by Lemma 1

 $R = \bigcap \{M' : M' \text{ is a maximal modular left ideal of } B \}$ $\subseteq \bigcap \{\phi^{-1}(M) : M \text{ is a maximal modular left ideal of } B/\theta(\overline{K}) \}$ Thus we have

 $\phi(R) \subset \cap \{M : M \text{ is a maximal modular left ideal of } B/\theta(\overline{K}) \}$ = the radical of $B/\theta(\overline{K}) = \{0\}$

since $B/\theta(\overline{K})$ is semisimple. Hence

$$R \subseteq \ker(\phi) = \theta(\overline{K})$$
.

REMARK. For an epimorphism $\theta: A \to B$ from a C^* -algebra onto a Banach algebra B it is known that $R=\circlearrowleft(\theta)$ where $\circlearrowleft(\theta)$ is the separating space of $\theta[8: \text{Thm } 4.1]$, [3: Coro. 2.2]. Hence we have $\theta(\overline{K})=R=\circlearrowleft(\theta)$.

COROLLARY 5. Let A and B be as in Theorem 4. If the radical R of B is commutative, then an epimorphism $\theta: A \to B$ is continuous.

Proof. Let $\hat{\theta}: \overline{K} \to R$ be the restriction of an epimorphism $\theta: A \to B$ to the closure of the kernel K of θ . Then $\hat{\theta}$ is an epimorphism of a C^* -algebra with commutative range, hence it is continuous by Laursen's result. Consequently $\hat{\theta}$ has the closed kernel and $K = \overline{K}$. Therefore we have $\operatorname{cl}(\theta) = \theta(\overline{K}) = \{0\}$.

THEOREM 6. Let A be a C*-algebra and B a Banach algebra with the radical R. If $\cap (R^n)^- = \{0\}$, then every epimorphism $\theta : A \to B$ is continuous. Here, $(R^n)^-$ denotes the closure of R^n .

Proof. Let \overline{K} be the closure of the kernel of θ . Since the restriction $\theta: \overline{K} \to R$ is an epimorphism of a C^* -algebra, to prove the continuity of θ it is enough to show that θ is continuous on each commutative

 C^* -subalgebra generated by a self-adjoint element of \overline{K} [8: Coro. 4.3]. Let $a \in \overline{K}$ be a self-adjoint element, $C^*(a)$ denote the C^* -algebra generated by a and D be the closure of $\theta(C^*(a))$. Since D is a closed subalgebra of the radical algebra R, it is a radical algebra.

Suppose that the restricted homomorphism $\theta: C^*(a) \to D$ is discontinuous for some self-adjoint element a of \overline{K} . Applying Theorem 4.3 of [9] we see that for every element x of $C^*(a)$ $\theta(x)$ is not nilpotent and

$$(\theta(x)D)^-=(\theta(x)^nD)^-$$

for each positive integer n. Suppose that there is an element in $C^*(a)$ with $\theta(y) \neq 0$. Since $\theta(y) \in D$ we have

$$\theta(y)^2 \in (\theta(y)^n D)^- \subset (R^{n+1})^-$$

for each positive integer n and hence

$$\theta(y)^2 \in \bigcap_{n=1}^{\infty} (R^n)^- = \{0\},\,$$

which implies that $\theta(y)^2=0$. This is contrary to $\theta(y)$ being not nilpotent, and θ must be continuous on $C^*(a)$ for each self-adjoint element a in \overline{K} . Therefore the epimorphism $\theta: \overline{K} \to R$ is continuous and we have $\mathfrak{I}(\theta) = \{0\}$.

If B is a Banach algebra satisfying the descending chain condition for left (or right) ideals, then the radical R of B is nilpotent, that is, there is a positive integer n such that $R^n = \{0\}$. (See e.g. [7; p.120]). Consequently we have the following corollary to Theorem 6.

COROLLARY 7. If A is a C*-algebra and B is a Banach algebra satisfying the descending chain condition for left ideals, then every epimorphism $\theta: A \to B$ is continuous.

References

- F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, NY, 1973.
- 2. K.W. Jhun, Continuity of homomorphisms and derivations on Banach algebras, J. Korean Math. Soc., (1) 23(1986), 35-41.
- H.G. Dales, Automatic continuity of homomorphisms from C*-algebras, Proc. Conference on Functional Analysis, Paderborn, Germany, North-Holland (1984), 197-218.

- 4. J. Esterle, Theorems of Gelfand-Mazur type and continuity of epimorphisms from C(K), J. Functional Analysis 36(1980), 273-286.
- 5. B.E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc., 73(1967), 537-541.
- 6. K.B. Laursen, *Epimorphisms of C*-algebras*, Proc. Conference on Functional Analysis, Paderborn, Germany, North-Holland (1984), 219-232.
- 7. N.H. McCoy, The theory of rings, Macmillan Co. NY, 1964.
- 8. A.M. Sinclair, *Homomorphisms from C*-algebras*, Proc. London Math. Soc. (3) **29**(1974), 435-452.
- 9. _____, Homomorphisms from $C_0(R)$, J. London Math. Soc. (2) 11(1975), 165-174.
- Automatic continuity of linear operators, London Math. Soc. Lecture Note Series 21, Cambridge University Press, 1976.

Sogang University Seoul 121, Korea