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SUFFICIENT CONDITIONS FOR LOCAL SOLVABILITY
OF NONSOLVABLE PSEUDODIFFERENTIAL OPERATORS

JonGsik KiMm, TACKSUN JUNG AND Q-HEUNG CHOI

Introduction

Let D be a pseudodifferential operator acting upon C*(Q;H*<(R?)).
In this paper we consider the existence of local solution of the equation

©0.1) D,=f
for a given f&Cy”(Q@XR"), i.e., we investigate what conditions should
be imposed on the function f for the existence of a C! solution u of the
equation (0.1) in some neighborhood of the origin. We consider only
the case when D=d,+d,B(¢t, D,) is a nonsolvable operator in a neighbor-
hood of the origin. The main result of this paper is given in Prop. 3.1.

1. Preliminaries

Let R* (resp. R*) be a v—dimensional (resp. n—dimensional) Euclidean
space. Throughout this paper, we shall denote by Q an open subset of
R* and by R, the dual of R®. For any real number we denote by H°*
=Hs(R") the standard Sobolev space on R*, i.e., the space of tempered
disributions # in R* whose Fourier transform # is a measurable function
in R,, satisfying

lall, = @m) ([ @+ 1€1918(@) 12dg ) <+ oo.

Starting with H* we build the following spaces
H-~= | Hs, H™=H-.

seR s&R

For any real s, let Es denote the subspace consisting of the generalized

functions # whose Fourier transform 4 is a measurable function in R,
satisfying
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Helll,= (2x) "‘(Jezﬂf 1G] |2d§>%<+w.

As with the Sobolev spaces, we form the union and intersection of the
space E°, but for s going to zero:

E%*=(JEs, E%=(E-.

>0 >0
Let t=(¢, ...,£,) denote the variable point in an open set QCR». Let
E be any one of the spaces H**, E%*. If p is any integer such that 0=
p=v, we denote by A2C~(Q;E) the spaces of C* p~form valued in the
space E. Thus to say that « belong to A?C*(Q;E) is the same as the

saying that
u(t, x) = Z qutJ
1T=s

where J is an ordered multi~index (jy, *++,j,) of integers such that 1=
J1<-+<jp=v, |J]| its length, here equal to p, dt;=dt;A...4dt;, and
uy are C* functions from @ to E.

Now we consider a C”one form in Q, depending on the parameter &
of R,;

b( O =1 bt &)t
We assume that the one form 5(z,£) is exact in Q. Thus there exists a

primitive B of & such that b(z, &) =d,;B(t,&). We also assume that

(1) B(, &) is real valued and positive homogeneous of degree one with
respect to & and
(2) B(t,) is a C~ function of ¢ in Q with values in C'(R,\0).

Under these assumptions b; (¢, D,) defines naturally a pseudodifferential
operator '

b; (¢, D) u(t, z) = (2m)~* |e=%; (2, ) (2, £) dE.
Here # denotes the Fourier transform with respect to z. We form a
pseudodifferential operator
D=d,+b(, D) A
For each $=0,1,...,v~1, it defines a linear operator
D? : A2C~(Q;E) —> A**1C~(Q;E).
We set D*=(. Then obviously we have
D2=Dt+loDp=()
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for any p=0,1, -, »-1. We note that D=¢"B%9J,B®%O Tt is evident
that D, hence also D, generates a complex.

We concern the equation

1.1 Du=f#,
where f € A#*1C*(Q;E). the By the Fourier transform with respect to
z we see that (1.1) is equivalent to

1.2 d,(eB) =eBf (for a.e.& in R,)
We denote by &,2C=(Q; E) the space of elements f of A2C~(Q; E) which
satisfying the compatibility condition; namely,

(1.3) for a.e.& in R,, the p—form eB“®f (¢, &) is a coboundary

2. Property (¢) and the statement of the solvability results.

F. Treves [3] found the necessary and sufficiant condition for the
solvability of the equation (1.1), which is a natural generalization of
the condition (P) for a single linear partial differential operator. We
will state the property (¢) and the solvability results in F. Treves [3].

We consider the complex

o> ABC=(Q; E) o> APIC(Q3E) — -+~
Let @’ be a nonempty open subset of Q, possibly equal to Q. Let U, V
be two open subsets of Q such that UCQ'N V. For any £é€R, and any
real r we write
UE ) ={teU;B@ &) <r}
and similarly with V substituted for U.
We consider the natural homomorphisms

2, H,(Q")
/" ?
(2.1) H,(U(&, 1)
SRS ACEY

where H,'s stand for the p-th homology groups.

DEFINITION 2.1. We say that the system D has property (¢), in
dimension p, in Q' relative to Q, if to every open subset UcQ’ there
exists an open set VC CQ containing U such that, given any & in R,
and real number 7,

2.2) Ker i, < Ker j,

We say that D has property (¢), in dimension p in @ if it has it in
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Q relative to itself, i.e., Q=0".

THEOREM 2.1. Suppose that D does not have property (), in dimen-
sion p, in @ relative to Q. Then there is an element f of Bp?*1C(Q;
H*) and a relatively compact subset U of @ such that

Du=f in U
has no solution u in A?C*(U, H-)

THEOREM 2. 2. Suppose that the system D has property (), in dime-
nsion p, in @ relative to Q. Let E be any one of H*=, E%*. Then, given
any relatively compact open subset U of ' and any element f in Bp?**
C=(Q;E), the equation

Du=f in U
has a solution u in A*C*(U;E).

For the proofs of Theorem 2.1 and Theorem 2.2 see Section IL 3 in

£3l.

REMARK 2.1. When @’ is homologically trivial in dimension p, the
property (2.2) can be stated in a simpler manner. Thus assume that
Hy(@)=C and H,(Q)=0 (>>0). Then (2.2) has the following mea
ning: If p=0,

(2.3) any two points in U(£,r) can be joined by a continuons path

contained in V(§,7), whereas, if p>0,

(2.4) every p—cycle in U(&,r) is homologeous to zero in V(&,7).

PROPOSITION 2.1. The system D has property ($), in dimension v-1,
in & relative to Q if and only if any one of the following equivalent
properties holds, for any € in R, and any r in R:

(2.5)  The natural homomorphism H,— (@' (€, r)) —H,—1(Q) is injective.

(2.6) The natural homomorphism H=1(Q") — H1(Q' (&, 1)) is surje-

ctive.

(2.7) No connected component of X\ (&, 7) is compact
For the proof see [3].

ExXAMPLE 2.1. Let B(t, &) = — (1,2+£2) |&[, where (£, 22) € Q= (— T3,
T1) X (—Ts T3) and £ € R,, Then D=d,+d,B(¢, D,)A does not
satisfy the property (2. 3) when p=0 and hence D is a nonsolvable
operator in dimension 0, in Q. Also D does not satisfy the property
(2.7) when p=1, and therefore D is a nonsolvable operator in dimen-
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sion 1, in Q.

REMARK 2.2. When v=1, there is only one case: p=0=r-1, and
(2.2) is equivalent to (2.7). Let us take 2"=0Q to be an interval.
Then (2.2) is equivalent to (2.3). When »=1, one deals with a single
operator D=38/0t+b(t, D,;), where b(¢, &) =0B(¢t,&)/ot. It is seen at
once that the validity of (¢) in Q (in dimension zero) is equivalent to
the following property:

(2.8) For all £ R, if (2 £)>0 for some 0 in @, then

b(t, €) =0 for every ¢ in @, >4,

EXAMPLE 2.2. Let B(t, &) =—¢2|&| and hence D=0/0¢t+5b(t, D,). Let
Q be an interval containing the origin. Then &(z, &) does not satisfy
conditon (2.8) and hence D is a nonsolvable operator.

3. Sufficient conditions for the solvability of nonsolvable ope-
rators

In this section we concern nonsolvable operators. First we deal a
single operator D=0/0t+5b(t, D,), where b(t, &) =0B(t,&)/ot. We will
make the assumptions for B(z, &) as follows:

(8.1) For some fixed ¢ € R,\{0}, B(t, &) has a local maximum at
t=0, in which case the function B(t, &) of # is decreasing in
(0, T) and increasing in (—7,0). Let V;={&< R,\0: B
(¢, &) 1s decreasing in (0, 7) and increasing in(— 7, 0) with
respect to ¢}. Then V; is a cone since B(¢ &) is positive
homogeneous of degree 1 with repect to &.

(8.2) For any fixed € € R,\V;, B(z,£) is a monotone function of
tin (=T, T) or it has a local minimum at =0, in which
case B(t, &) is increasing in(0, T) and decreasing in(— T3, 0).

If B(¢, &) satisfies the condition (3.1), then, from Remark 2.2, we see

that the operator 9/0t+b(t, D,), where 0B(t, &) /0t=b(¢, &), is a non-
solvable operator.

PROPOSITION 3.1. Let B(t,&) satisfy the above hypothesis (3.1) and
(38.2). Let f€C”((—T, TYXR") and

Kf@=@o [ | entrn0omeon, ©F(,6ds d¢
be real analytic. Then
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3.9 Du=f in (—T, T)XR,

has a C! solution.

Proof. If we take a Fourier transform (w.r.to x) of the equation (3.
3), then we have

3.9 %H»(t, &a=F(8).

We have a formal solution of the equation (8.4):

26 8) =] ePeOt00f (s ) ds,

where #, depends upon &. Let
Vo=1{& € R,\V;: B(t,£) is a monotone increasing function of ¢ in
(-7, 7)}.
Then for € € V,, we have an integral representation of a solution of
the equation (3.4) as follows:

li(t, E) =f_Te—B(z, +BG, O f(s, E) ds.

In this case Xy,(§)4( &) is a rapidly decreasing function and F-1(Xy,
#) is a C= function of (, z)

Let V;={&e R\(V1UVy) : B(s,&) is decreasing in (—7T, T)}.
Then for £ € V;, we have an integral representation of a solution of
the equation (3.4) as follows:

% (t, S) — _Jje—B(t, & +B(s,® f’(s, E) ds.

In this case Xy, (£)4(% &) is a rapidly decreasing function and F1(Xy.,2)
is a C* function of (¢, z).

Let V,={¢ & R\(V;U VoUU V3) : B(t, &) is increasing in (0, 7) and
decreasing in (—T,0) }. Then for & € V,, we have a solotion of the
equation (3.4) as follows:

2@, &) =j:e—3c:, O+BG.OF(5, &) ds.

In this case Xy,(§)2(¢, &) is a rapidly decreasing function and &-1(Xy,2)
is a C* function of (¢, z). ‘

Let V; be a set defined in the condition (3.1) . Then for £ € V,,
if £>0, then we have a solution of the equation (8.4) as follows:
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4 (t, E) —_ __.J:.e-B(t, &+B(, e>f‘(s, s) ds.

and if #<{0, we have a solution of the equation (3.4) as follows:

(s, &) = J '_Te-su, O+BGOF(s, £)ds

In this case

a(+0, ) ~a(—=0,) = — [ cmo.04m605(5, )4,
which means that #(z, &) is not continuous at t=(0 when é€ V. If we
denote 9 the derivative in the distribution sense and [i] the class-

ot ot
ical derivative in £%0, then for &£ € V,

Ou _[Ou . v
% —[28)+5) @(+0,8) —i(—0,8)
Therefore for all ¢ € R, 4(t,£) is a solution of the following equation
(3.5 2tpa=[2]+5,0a+5() %, ©) @(+0, &) ~a(—0,

)=+ %Xy, () @(+0,8) —2(—0,8).
Taking an inverse Fourier transform (w.r.to &) of the equation (3.5),
we have

3.6) % +5(t D) u=F~0 () KS (@),

where
Kf(z) =—F 1Ky, (&) @(+0,8) —a(—0,&))
= (27) - Jj;_T J ExE-BO.OFBGOK, (£)f (s, &)ds dE.
Now
(3.7 D(H@®KSf(z))=06@®Kf(z) +H@®)b(t, D) Kf ().
From (3.6) and (3.7), we have
D+H@EKf(z))=f+H@)b(@, D,)Kf(z).
We define a function v (¢, z) as follows:

v(t, ) = — (21) " IR f;ob(t, ) Kf(8)eiz-t-Be.O+BwO4s gt if 120

and v (¢, z) =0 if £<0.
Then we have
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D(u+H@) Kf(z) +v)=f,
and hence w=u+H () Kf(z) +v is a solution of the equation (3.3). It
is easy to show that w is CL. The proof is complete.

Next we consider a operator D=d,+b(, D,).A, where &(t,&)=d,B
(¢, &) and z € R*, in an open set @ € R¥ containing the origin. If for
some & € R,\0, B(z,£) has a local minimum at an interior point of Q,
then we can not guarantee the solvability of D in dimension 0, in Q.
In this section we only concern the particular nonsolvable operators.
Let Q=(—Ty, Ty) X+ X(—T,, T,). We will make the assumptions for
the nonsolvable operator D as follows:

There exists j (1=j=<y) such that both (3.8) and (3.9) holds;

(3.8) For some fixed ¢ € R,\0, B(z, &) has a local maximum at the

origin, in which for any fixed (¢, ..., ¢j,...,) B(5,&) is a
decreasing function of ¢; in (0, 7;) and increasing function of
& in (—T;,0). Let V={& € R,\0: B(t, &) satisfies condition
(3.8)}. Then V is a cone since B(t, &) is positive homoge-
neous of degree 1 with respect to &.

(8.9) For any fixed ¢ € R,\V, B(£) is.a monotone function of

tj in (—Tj, T;) or it has a local minimum at the origin, in
which case B(z,£) is an increasing function of t; in (0, T;)
and decreasing function of # in (—77,0).

PROPOSITION 3.2. Let B(t,&) satisfy the conditions (3.8) and (3. 9.
Let f € Bp'Cy*(RXR") and
Kf G oo by oo ty2) = @) [ 7 [ ooty asnty
$;=—TiJ Ry

Xy (€) f (#1, -+, Sjs ==y by E)ds;dE
be a real analytic function of z. Then
Du=f in QXR~,
has a C' solution.

Proof. cf. Proposition 3. 1.
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