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ON AFFINE PARTS OF ALGEBRAIC THEORIES

ROSA M. FERNANDEZ RODRIGUEZ AND JOSE L. FREIRE NISTAL*

1. Introduction
The idempotent operations of an algebraic theory n = (1', r;, 11) are the

operations of a subtheory n' namely the affine part of n, [3]. A theory
which coincides with its affine part is called affine [5J, which is equiv'
alent to saying: n is affine if and only if every singleton in an-algebra
is a subalgebra, or if and only if the free algebra generated by 1 is 1
[9J. For example, convex spaces, compact Hausdorff topological spaces
or semilattices are models of affine theories.

This paper deals with affine parts of algebraic theories in a finitely
complete category K, presented in a slightly different manner than in
[6]. Our aim is to calculate the affine part of some algebraic theories
(triples or monads) in K.

Let K be a finitely complete category and 1 a terminal object.

DEFINITION 1. 1. An algebraic theory n in K is affine if 1'(1) = 1­

For instance, if K is the category of abelian groups and A is a ring,
then A 0 {O} = {O} means that A-modules is affine as an algebraic
theory in K.

For any object A of K we denote by tA the unique morphism from
A to 1. Let n = (1', 1j, 0) be an algebraic theory in "clone" form
[7J in K. Then the pullback

tT' (A)
T'(A) ~ 1

(1. 2) r;d 1iA
T(tA)

T(A) ~ 1'(1)

defines the object 1"(A) and the monomorphism iA' The naturality of
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1j implies the existence and uniqueness of amorphism 1jA': A­
T' (A) , such that iA·1jA'=1jA.

If a: A - T' (B) and f3 : B - T' (C) are morphisms in the category
K,

T(tc) • {(ic' f3) 0 (iB • a)} = {T(tc) • ic . f3) 0 (iB • a)
= (1jl • tT, CC) • f3) 0 (iB • a) = (1jl • tB) 0 (iB • a)
= T(tB) • iB • a=1jl • tT'CB) • a,

thus there is a unique 'C' : )A - T' (C), such that

ic . 'C'= (ic . f3) 0 (iB • a).

From the well known fact that the embedding in KK of the category
of theories creates limits, and defining f3 o 'a='C' we obtain the subtheory
1C' of 1C given by i.

Also we obtain the multiplication of 1C', given as the unique morphism
fl such that iA • !-tA'= f.1.A ·iA2•

To avoid confusion, we sometimes write 1jT', iT and f.1.T'.
If A : S - 1C is a theory map, there exists a unique morphism of

theories A' : S - 1C' such that A • is=iT • A'; i. e. the construction of
the 1C' is a natural one. In fact, this construction is a coreflection of the
category of theories.

DEFINITION 1.3. Given the algebraic theory 1C, the coreflection of 1C
is called the affine part of 1C.

Note that 1C is affine if and only if 1C=='1C'.
It follows from the definition 1. 3 that the calculations of affine parts

commute with all limits. In the next parapraph, we examine the affine
parts of constructions that are not included in this case.

2. Properties of the Affine Parts
First we generalize a well known property of algebraic theories on the

category Set of sets and functions (even for the infinitary ones), [3J.

DEFINITION 2. 1. Let S be a subtheory of 1C given by i. We say that
S is division-closed if for any a : X - S(B), v : A - S(B) and w :
X - T(A) with (iB' v) ow=iB • a, there exists f3 : X - S(A) with
w=iA • f3.

PROPOSITION 2.2. The affine part of an algebraic theor:v 1C is division­
closed.

Proof. The existence of f3 is equivalent to saying that
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T(tA) . w=rh . tx
but this equality holds because

T(tA) . w= (r;l . tA) °W= (r;l . tT'CB) . v) ow
= (T(tB) . iB . v) ow= {(r;l . tB) oiB • v) ow
= (r;l . tB) ° (iB . a) =r;l . tT'CB) . a=r;l . tx·

It is easily proven that a subtheory of an affine theory is affine too.
Then, from the exactness properties of the association n - n', we
obtain the following:

TS(A)

1TS(tA)

TS(l)1

tT'S' CA) 1
allows us to assert that

Now

PROPOSITION 2.3. Let 8 be a subtheory of n. If 8' and n' are the
respective affine parts, then for each object A in K we have that S' (A)
=S(A) n T'(A).

We shall now be concerned with the calculus of the affine part of the
composite of algebraic theories, definite by a distributive law [lJ.

Let n=(T,r;T,/l,T), 8=(S,r;s,f..tS) be algebraic theories on K. Let us
assume that the composite theory exists; i. e. there exists a multiplication

m: TSTS- TS

with the following properties:

(i) n8= (TS, r;Tr;S, m) is a theory in K.
(ii) The natural transformations r;TS : S - TS, and Trl: T­

TS are theory maps.
(iii) The middley unitary law m . Trlr;TS = TS holds.

PROPOSITION 2.4. Let nand 8 be algebraic theories such that there
e.'rists the composite theor.y n8. If T preserves pullbacks of type (1. 2),
then (7(;8)'=n'8'.

Proof. By the hypothesis on T, the composite pullback

is'CA? T(iAS)
T'S' (A) - TS' (A) -

T(ts' w) 1
r;lT

- T(l)
(TS)'= T'S'.

(iTiS)A . (r;T'r;S')A= T(iAS) . is'(A)T . r;S'(A)T' . r;AS'
= T(iAS) . r;S'(A)T . r;AS'= (r;Tr;S)A,

hence, r;T'r;S' is the unit of the affine part of n8, which will be the
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theory (1CS)'= (T'S', rl'rl', m'), m' being determined by
mA' UTisPA=(iTiS)A' mA"

On the other hand, since for each object A of K

TUAS) • is'CA? . r;S'(A)T=r;S(A)T • iAS,

holds, it follows that r;T'S' : S' --i> 1C'S' is a theory map.
Similarly, T'r;s': 1C' --i> 1C'S' is also a theory map.
It remains to prove the middley unitary law.
By definition of r;', we obtain:

UTiS)A·mA'· (T'r;S'r;T'S')A=UTiS)A· idT'S'(A),
tT'S'(A) • mA' • (T'r;S'r;T'S')A=tT'S'(A) • idT's'(A).

Therefore, mA" (T'r;S'r;T'S')A=idT's'(A) as was to be shown.
If l=m • r;TSTr;s : S1C --i> 1CS is the distributive law of S over 1C,

we obtain the following relation:

iTis ·l'=",'TiS • m' • r;T'S'T'r;S'=m • r;TSTrl' iSt,'T=l • iSiT ,

l' being the correspondent distributive law between the affine parts.

3. Examples and Applications

3. 1. Let L be a set. The adjunction

(-,L)
SetO
~ Set
(-, L)O

where (-, L) represents the functor Homset(-, L), gives rise to an
algebraic theory D in Set, the "fuzzy" Double Dualization Theory. The
description of D= (D, r;, p) is:

D(X) = ((X,L), L)

Df(lf!) =If! • (f, L) for each fE (X, Y) and If!E ((X, L), L)
(r;x(x»(A) =A(x) for each xEX and AE (X, L)

(Px(ifJ»(A) =ifJ(r;(x,L)(A» for each AE(X,L) and ifJED2(X).

If we consider the pullback diagram
tD'(X)

D'X --i> 1

1r;1
D(tx)

DX --i> Dl

If!ED'(X) if and only if D(tX)(lf!)=r;l(l) =idL. But, D(tx)(lf!)=
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l]f . (tx, L). Hence
(*) l]fED'(X) <===> l]f(kz)=1 for each lEL
being kz : X~ L given by kz(x) =1 for each xEX.

Now let us assume that L= 2. Then D is the Double Power-Set Theory
D(X) =P(P(X», i. e. the set of all collections of subsets of X and
SetD is the category of Complete Atomic Boolean Algebras. In this case
(*) becomes

l]fED'X {:=:? XEl]f and ~~l]f.

This caracterization can also be obtained from a syntactic point of
view, taking into account that each l]fEPPX has a unique representation
in the variables YJx (x)

w= u[(np(x» n(n (p(x»')]
AE~ xEA x$A

P(.'l:)=YJx(x) being the principal ultrafilter on x.
Finally note that, as a consequence, for a set X with finite cardinal

n, there exist exactly 22n - 2 collections l]f in D' (X).
3. 2. We may now show how Proposition 2. 3 allows us to identify

the affine parts of some subtheories of D.
i) Let D,; (A) = { l]fcP (A) I l]f is order filter preserving} be the

algebraic theory whose models are the completely distributive complete
lattices.

D',; (A) = { l]fE D,; (A) I~~ l]f}.

ii) Cl (A) = {F IF is quasifilter on A}, defines an algeraic theory. The
correspondent category of models has objects complete lattices satisfying

Inf(SupA;/iEI) = Sup (Inf(a;/iE I) I (ai) E rr Ai)'
iEI

for each family (Ai) iEI of directed subsets, and whose morphisms preserve
all infima and all suprema of directed subsets. Then, Cl' (A) = { F I F is
a filter on A}.

iii) We denote by P the covariant powerset functor on sets. Singletons
and set unions define natural transformations YJ and 11. This data define
the well known algebraic theory P= (P, YJ, /1) called the Powerset Theory.

SetP may be identified with the category of complete semilattices. P is
a subtheory of D in this way AA : P A~ DA,

AA (X) = {SI xcS}. Then,

P'(A)={XcAI{SIXcS} is a filter}

={XcAIX*~}.
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3.3. Finally, we list here some examples where the Proposition 2.4
can be applied.

i) Let E be a set. Let us interpret E as an algebraic theory E in
Set whose models form the slice category ElSet. This theory admits a
distributive law over any algebraic theory 7C. Hence the composite theory
7CE exists.

For example, for 7C=P, (PE)' (A) = {ScAIS*([>}.

ii) Let S be the free monoid theory in Set, and 7C the free abelian
group theory. As is well known, there exists a distributive law of S
over 7C. The composite TCS is the free ring theory and TS (X) is the
polynomial ring Z[XJ with the elements of X as noncommuting indete­
rminates. Then, as S' is the identity, we obtain (7CS)'=7C'.

iii) A monoid M can be interpreted as an aigebraic theory in Set via
cartesian product in the obvious way. Let SetM be the corresponding
algebraic category of M-sets. If 7C is any theory, there is the composite
theory TCM whose algebras are the 7C-algebras equipped with M-operations
and the elements of M act as 7C-homomorphisms. If 7C is in the hypothesis
of 2.4, then (7CM)'=7C' because the theory M' is isomorphic to the
identity.

iv) In [2J, Bunge shows that if a theory S preserves all powers,
then there exists the composite TCS for any theory 7C. In particular, we
can take S as the n-power theory given through the following data: the
n-power functor (-) n : Set -----'). Set, 1}A: A -----'). An is the exponencial
adjoint of the projection nXA -----'). A, and /lA : (An) n -----'). An is induced
by the diagonal map n -----'). nXn.

We thus have (T(-)n)'(A)=T'(An) for any theory 7C in the
hypothesis of 2. 4.

The authors wish to thank the referee for valuable suggestions.
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