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COMPACT TOTALLY REAL SUBMANIFOLDS WITH
PARALLEL MEAN CURVATURE VECTOR IN A
COMPLEX SPACE FORM

U-HaNG Ki AND Hisa0 NAKAGAWA

0. Introduction

A submanifold M of a Kaehlerian manifold M is said to be totally
real if each tangent space to M is mapped to the normal space by the
complex structure of M. The concept was first introduced by Chen and
Ogiue [2], who studied their fundamental properties. Many subjects
for totally real submanifolds were investigated from various different
points of view, as one of which Chen, Houh and Lue [1] and Yachida
[8, 9] obtained investigating results of m-dimensional totally real
submanifolds with parallel mean curvature vector in 2m-dimensional
complex space forms. Furthermore, Urbano [7] and Ohnita [5] recently
determined also manifold structures of such a submanifold of positive
curvature or of non-negative curvature, respectively.

The purpose of this paper is to investigate compact totally real
submanifolds with parallel mean curvature vector of a complex space form.

Manifolds, submanifolds, geometric objects and mappings discussed in
this paper are assumed to be differentiable and of C>.

1. Totally real submanifolds of a Kaehlerian manifold

Let (M, z) be a Kaehlerian manifold of real dimension 2m equipped
with an almost complex structure J and a Hermitian metric g. Let M
be covered by a system of coordinate neighborhoods { U, ¥4}, where
here and in the sequel the following convention on the range of indices
are used, unless otherwise stated:

A,BC..=1,...,n,n+1,...,2m,
ki, 3, .. =1, .., m,
U, v, W, ...=n+1, ..., 2m.
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The summation convention will be used with respect to those system
of indices. We then have

1.1) JaBJgC=—084, JgCTaPEcp=2Ba>
54C being the Kronecker delta, Jz4, zps the components of J and g,

respectively. Denoting by 5 the operator of covariant differentiation
with respect to g4p we get

(1. 2) V BJ A=O.

Let M be an n-dimensional Riemannian manifold covered by a system
of coordinate neighborhoods { U;z*} and immersed isometrically in M
by the immersion ¢ : M —> M. When the argument is local, M need
not be distinguished from ¢(M). We represent the immersion ¢ locally
by y4=y4(z?) and put Bj4=09;y4, (0;=0/0z7), then B;=(Bj4) are
n-linearly independent local tangent vectors of M. We choose 2m-n
mutually orthogonal unit normals C,= (C,4) to M. Then the induced
Riemannian metric g;; on M is given by

(1.3 gji=ZpcB;*B°.

Therefore, by denoting by ; the operator of van der Waerden —Bortolotti

covariant differentiation with respect to gj;, the equations of Gauss and
Weingarten for M are respectively obtained:

1.4) V;iBiA=h;;7C,4, V;C;A=—hi, B4,
where £;;* are the second fundamental forms in the direction of C, and
(1.5) hito=hj. gt =h;P g gy,

Zyz=884C,PC,4 being the metric tensor of the normal bundle and (g7%)
=(g ji) -

An n~dimensional Riemannian manifold M immersed isometrically in
M is called a totally real submanifold of M if JM,— M, for each point
p of M, where M, denotes the tangent space of M at p and M,* the
normal space to M at p. In this case, JX is a normal vector to M,
provided that X is a tangent vector on M. Thus it follows that the
dimensions satisfy m=n. Let N(M,) be an orthogonal complement of
JM, in M,'. Then the decomposition is obtained: M,+=JM,DN(M,).
Hence, it follows that the space N(M,) is invariant under the action of
J. Accordingly we can put in each coordinate neighborhood of M,

1.6 JpABB=J;"C 4,

1.7 JpAC,B= —JiB;A+ f,7C, 4,
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where we put J;,=g(JB;,C,),J,;=—2(JC,, B;) and f,,=z(JC,,C,).
From these definitions we see that

(1 8) fxy+fy.t=09 ']JI:J-ZJ
By taking account of (1.1) and (1.3), it follows from (1.6) and (1.7)
that

ijJzkzajh: szfly:O,

(1. 9) {fxzfzy= _5xy+JziJiy’
where J;#=J;,8%%, f,"=fy.g"% and g¥* is the contravariant component
of g,.. These show that f3+f=0. f being of constant rank, it defines
the so—called f-structure in the normal bundle [107.

If we apply the operator ; of the covariant differentiation to (1.6)
and (1.7) and make use of (1.1), (1.2), (1.4) and these equations,
we get respectively

(1.10) hii*J o= h;p*J i
(1.11) Vi s =h;#f.%
(1.12) Vify*=hj;Ji=—h;*J.

In the sequel, we assume that the ambient Kaehlerian Manifold M is
of constant holomorphic sectional curvature 4¢ and of real dimension 2m,
which is called a complex space form and denoted by M?m(c). Then the
curvature tensor R of M?2"(c) is given by

Rpcsa=c(@pagcs—Ecagpet+Ipates—Jcalpr—2TpcJpa)-
Since the submanifold M is totally real, it follows from equations (1.6)
~(1.9) that equations of Gauss, Codazzi and Ricci for M are respectively
obtained:

(1.13) Rijin=c(gmngji—gingki) +han"hjiz—hjshpiz,
(1.14) Vihii®—V ihei*=0,
(1. 15) Rj;yx=c (szJ,'y_‘J,'ijy) +hj,xhiry—h,'r1hjry,

where Ryj;;, and Rj;y, are the Riemannian curvature tensor of M and
that with respect to the connection induced in the normal bundle of M,
respectively. We see from (1.13) that the Ricci tensor R;; of M can
be expressed as follows:

(1.16) Rji=c(n—1) gji+h*hjiz—hj,"hi 2y, (ho=g/hj;z).
2. Parallel mean curvature vector

Let M be an n-dimensional totally real submanifold in a complex
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space form M?2"(c) of constant holomorphic curvature 4c. A normal
vector field &= (&%) is called a parallel section in the normal bundle if
it satisfies p;6¢=0, and furthermore a tensor field ¥ on M is said to
be parallel in the normal bundle if p;F vanishes identically. In this
section, the f-structure in the normal bundle is assumed to be parallel.
In this case, the equation (1.12) is reduced to
(2.1) hjry 5=y .
Multiplying 2#2J,% to (1.10) and summing up for j,i and % and making
use of (2.1), we find '
B3R o d g Joh= kIR, i TP,
which together with (1.9) gives
RF9hi0 By +f57f ) =hF*=hjis.
Thus it follows that '
(2.2) h;if =0, ie., 7;JF=0
for any index z, where we have used (1.11).

REMARK. We notice from (1.9) that f,# vanishes identically if m=n.
Thus, an n-dimensional totally real submanifold of a real 2n—dimensional
Kaehlerian manifold has always a trivial f~structure in the normal bundle.

Applying J,* to (1.10) and summing up for h, we obtain &;;,=h;*
JyJzi with the aid of (1.9) and (2.2), from which we get, taking
the skew—symmetric part of this with respect to indices j and 4,

(hjrmJyr) Jiz— (hieryr) Jj,r:o'
Therefore we see, by a direct consequence of (1.9) and (2.2), that
hjeryr —_ PszJj z’
where P, is defined by P,*=#;*J,7J¢ and hence it satisfies

(2' 3) Pyzz = =0.

Denoting P.,.=g,,P.y? we see that P,,, is symmetric with respect to
all indices, because of (2.1). It follows from (2.3) that

@49 hji* =Py T J 5,
which together with (1.9) and (2.3) gives P, P?*= h;7h’, and
(2.5) hE=P=,

where P*=P =,
From now on we denote the index n+1 by *. When z=2-1 in
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(2.4), we have

(2.6) hj* =Py * .
From this equation and (2.4) it is easily seen that
(2 7) hjrzhir*_—_quzPyu*JjZJiy_

Let § be a mean curvature vector field of the submanifold. Namely,

it is defined by
J=g7h;*C./n=h*C,/n,

which is independent of the choice of the local field of orthonormal
frames {C,}. Since the fact that the mean curvature vector is parallel
in the normal bundle is assumed, we may choose a local field {e,} in
such a way that §=aC,,;, where a=|f|| is constant. Because of the
choice of the local field, the parallelism of ¢ yields

(2. 8) }lIZO, x;n—{—Z,
*=na.
4 being a normal vector field on M, the curvature tensor R;;,, of the

connection in the normal bundle shows that Rj;x,=0 for any index =z.
Thus the Ricci equation (1.15) gives

(2. 9) ]lj,.x]lir*—‘hirxhjr*:C(Jj*J,'x"'J,'*ij).
By the way, we notice from the first equation of (2.2) that
(2.10) S¥*=0,

because of the fact that § is non trivial. For a normal vector field &,
let A; be a shape operator of the tangent space M, at p in the direction
of & which is defined by g(A4.X,Y)=z(0(X,Y),£) for any tangent
vectors X and Y of M,, where ¢ denotes the second fundamental form
on the submanifold. In particular, the shape operator in the direction
of C,4 is denoted by A*. The following property is then obtained.

LEMMA 2.1. Let M be a totally real submanifold with parallel f-
structure in the normal bundle in a complex space form M?*™(c). If the
mean curvature vector is non trivial and parallel, and if A* has no

simple roots, then ¢=0.

Proof. Since the shape operator A*= (&;*) is diagonalizable, a local
field {¢;} of orthonormal frames in M can be chosen in such a way that
hi*=2;67. Namely, 2y, ..., 4, are eigenvalues of A*. The eqaution (2. 9)
is then reduced to
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(2;—lj)h;j$=c(Jj*J,-‘—J,-*Jj-").
We put [i]=1{j: 4,=2;}. For any integer i the assumption implies that
there is an integer j in [4] different from i, and hence 4;=2;. It yields
¢J;*=0, because of (1.9), and hence ¢=0 by means of (2.10). This
concludes the proof.

REMARK. Let M be an n-dimensional totally real submanifold in M2*
(¢) (¢#0). It is shown that if the nontrivial mean curvature vector is
parallel in the normal bundle, then the shape operator A* has simple

roots.
Now, the equation (2.9) together with (2.7) yields

(Po"Py** — Py, 2P %) J T P =c (Jjad i — Jisd 7).
Hence it follows that
(2.11) PPy * —Py"P =¢84 5 — TS T %0 ys)
by means of (1.9), (2.3) and (2.10). Contracting = and y in (2.11)
and making use of (1.9), (2.5) and (2.8), we find

(2.12) P, Pre* —p*P ¥ *=¢(n—1) 8,4,
and hence
(2.13) Pyx*Pyz*=h*P***+c(n——1).

By multiplying %% to (2.11) and summing up for z, it is easily seen
that
R* Py 7P % — B P, aP o = (h*J JJ £ — h#d )
by means of (2.3), (2.5), (2.8) and (2.10). From the fact that P,
is symmetric for all indices it follows that
Poos Py* Pev* =P Pyes P *% 4o (b —P,*%),
because § is non trivial, where we use (2.5) and (2.8).

Substituting (2.12) into the last equation and making use of (2.3),
we obtain

(2.14) Ppx PP Poy*=p*¥P  * P #* +c(n—2) Pyy® +ch*.

LEMMA 2.2. Let M be a totally real submanifold with parallel f-str-
ucture in the normal bundle in M?™(c). If the non trivial mean curvature
vector is parallel, then

(2.15) A(h;*h*) =2\ sh;;*||%,

where A is the operator of Laplacian.



Compact totally real submanifolds with parallel mean curvature vector 147
in a complex space form

Proof. The mean curvature vector being parallel in the normal bundle,
the Laplacian of kj;* is given, using the Ricci formula for A;;*, by
(2.16) Ahji* = Rk — Ryt
On the other hand, it follows from (1.16) and (2.8) that
Rjy=c(n—1) gji+h*hji* —h;7hi .
If we substitute this and (1.13) into (2.16), we obtain
Ahy* =cnhy* —ch* g+ h¥hy,  h* — btk hy,
+hkiyhkh*hj},y'—hjkyk,hyh,-'*.
By means of (2.10), it turns out to be
Ahji* = cnhy* —ch* ggit B by, by — bW by,
~ch;j? (' Jiy—Jixdy),
or, taking account of (1.9), (2.3), (2.4) and (2.7), we have
Ah;; ¥ =cnhj;* —ch*g;;-+h* Py, * P ¥ J;= Y
PPt h (Pt Ty — PV ).
Thus it follows from (2.5), (2.6) and (2.8) that
dhji*=c(n—1)hj;* —ch* (g;;i—JjxJis)
FR*P Pyt TRy — Py PRty
Consequently it follows from the last equation that
R Ah;* =c(n—1) Pyys P?* — ch*2+ch* Py *
+h*Pyz*P,f*Py“*— (P,,?P==*) (PuvyP"v*>,
where we have used (1.9), (2.3), (2.6), (2.7) and (2.8). Substituting
(2.12)~(2.14) into the above equation, we obtain A** Ah;;,=0. This
completes the proof.
COROLLARY 2.3. Let M be an m—dimensional totally real submanifold
in M2 (c). If the nontrivial mean curvature is parallel, then (2.15) is

valid.

3. Characterization of submanifolds

This section is devoted to investigating the manifold structure of compact
totally real submaniolds in a complex space form M?m(c). Let M be an
n-dimensional compact totally real submanifold of M2m(c) such that the
f-structure in the normal bundle is parallel. If the non trivial mean
curvature vector § on M is parallel, then Lemma 2.2 says the second
fundamental form #;;* in the direction of § is parallel, thatis, Fzh;;*=0
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on M. When a function %, for any integer m=1 is given by
b= hiliz* hizi3*- B himil*’

it is easily seen that %, is constant on M for any integer m, because
hj;* is parallel. This implies that each eigenvalue A; of the shape
operator A* is constant on M. By y, -, tt, mutually distinct eigenvalues
of A* are denoted. Let #y, ...,n, be their multiplicities. Since distinct
eigenvalues g, (e=1,...,a) is constant, the smooth distribution 7", which
consists of all eigenspaces associated with the eigenvalue can be defiend,
and they are then mutually orthogonal. Furthermore, A* being parallel,
these distributions T, are parallel and hence completely integrable. Thus,
by means of the de Rham decomposition theorem [3], the submanifold
M is a product of Riemannian manifolds M; X... X M,, where the tangent
bundle of M, corresponds to T,. First of all, we shall prove

THEOREM 3.1. Let M be an n-dimensional compact totally real subm-
anifold imbedded in a 2m-dimensional complex Euclidean space C,. If
an f-structure in the normal bundle is parallel and if the mean curvature
vector is parallel, then M is a product submanifold MyX...X M,, where
M, is a compact n,~dimensional totally real submanifold imbedded in C,,
and M, is contained in a hypersphere in Cy,.

Since the proof is accomplished by the quite same discussion as that
in [1] and [6], it is only sketched. Since the ambient space is complex
Euclidean, it can not admit compact minimal submanifolds. So, the
mean curvature vector ¢ is not trivial. Furthermore, since § is parallel
in the normal bundle, each shape operator A, satisfies [A¥*, A,]=0,
which implies 4,7, T, for any indices y and a. By means of Moore’s
Theorem [4], M=M;X...XM, is a product submanifold imbedded in
C,=C,.X...XC,.. Moreover, M, is a totally real submanifold imbedded
in some C,, because we can choose an orthonormal basis e;4; ..., €ms
for JM, and an orthonormal basis €,.1, ..., €ns €ri14s -oes €ms fOr N(M,)
in such a way that

hif=hiji=hy?, hij*=0 for 2=n+1, ..., m*.

Let z,($) be the component of # in the subspace C,,. Then =z, (§) is
a parallel mean curvature of M, in C,, and M, is umbilical with
respect to 7, (#). Therefore it follows that M, lies in a small hypersphere
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in C,, which is orthogonal to z,(f), and hence it is a compact minimal
submanifold in the hypersphere. This completes the proof.
As a direct consequence of Lemma 2.1 and Theorem 3.1, we have

THEOREM 3.2. Let M be an n—dimensional compact totally real subm-
anifold with parallel f-structure in the normal bundle imbedded in a
complex space form M?m(c). If the non trivial mean curvature vector is
parallel and if the shape operator A* has no simple roots, then ¢=0. In
particular, if M (c)=C,, then M is a product submanifold M;X...X
M,.

THEOREM 3.3. Let M be an n—dimensional compact totally real subm-
anifold with parallel f-structure in the normal bundle in a complex space
form M?(c). If the non trivial mean curvature vector is parallel and
if M has no zero sectional curvature, then c¢=0. In particular, if
M (c)=C,, then M must be minimally contained in a hypersphere of
positive curvature in C,,.

THEOREM 3.4. Let M be a compact totally real submanifold with
parallel f-structure in the normal bundle in a complex space form M?®m
(¢). If the non trivial mean curvature vector is parallel and if the shape
operator A* has mutually distinct eigenvalues, then M is flat and moreover
the second fundamental form is parallel.
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