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COMPACT TOTALLY REAL SUBMANIFOLDS WITH
PARALLEL MEAN CURVATURE VECTOR IN A

COMPLEX SPACE FORM

V-HANG Kr AND HrsAo NAKAGAWA

O. Introduction

A submanifold M of a Kaehlerian manifold M is said to be totally
real if each tangent space to M is mapped to the normal space by the
complex structure of M. The concept was first introduced by Chen and
Ogiue [2J, who studied their fundamental properties. Many subjects
for totally real submanifolds were investigated from various different
points of view, as one of which Chen, Houh and Lue [lJ and Yachida
[8, 9J obtained investigating results of m-dimensional totally real
submanifolds with parallel mean curvature vector in 2m-dimensional
complex space forms. Furthermore, Urbano [7J and Ohnita [5J recently
determined also manifold structures of such a submanifold of positive
curvature or of non-negative curvature, respectively.

The purpose of this paper is to investigate compact totally real
submanifolds with parallel mean curvature vector of a complex space form.

Manifolds, submanifolds, geometric objects and mappings discussed in
this paper are assumed to be differentiable and of COO.

1. Totally real submanifolds of a Kaehlerian manifold

Let (M, g) be a Kaehlerian manifold of real dimension 2m equipped
with an almost complex structure J and a Hermitian metric g. Let M
be covered by a system of coordinate neighborhoods {D, yA }, where
here and in the sequel the following convention on the range of indices
are used, unless otherwise stated:

A, B, C =l, , n, n+1, ... , 2m,
h, i, j, =1, , n,
u, v, w, =n+l, ... , 2m.
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The summation convention will be used with respect to those system
of indices. We then have

(1.1) JABJBC= -VAC, JBCJADgCD=gBA,

VAC being the Kronecker delta, JBA, gBA the components of J and g,
respectively. Denoting by VB the operator of covariant differentiation
with respect to gAB, we get

(1.2) VBJCA=O.

Let M be an n-dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {U; x h } and immersed isometrically in M
by the immersion if> : M~ M. When the argument is local, M need
not be distinguished from if> (M) . We represent the immersion if> locally
by yA=yA(xh) and put BjA=OjyA, (OJ=olox j ) , then Bj = (BjA) are
n-linearly independent local tangent vectors of M. We choose 2m-n

mutually orthogonal unit normals Cz= (CzA) to M. Then the induced
Riemannian metric gji on M is given by

(1. 3) gji=gBCB/B{.

Therefore, by denoting by Vj the operator of van der Waerden -Bortolotti
covariant differentiation with respect to gji' the equations of Gauss and
Weingarten for M are respectively obtained:

(1. 4) VjBiA=hjiXCzA, VjC.xA= -h/xBiA,

where hijX are the second fundamental forms in the direction of Cx and

(1. 5) hjhx=hjixgih=hj/YgihgyX'

gyx=gBACyBCXA being the metric tensor of the normal bundle and (gH)
= (gji)-l.

An n-dimensional Riemannian manifold M immersed isometrically in
M is called a totally real submanifold of M if JMpcM/- for each point
p of M, where Mp denotes the tangent space of M at p and MpJ.. the
normal space to M at p. In this case, JX is a normal vector to M,
provided that X is a tangent vector on M. Thus it follows that the
dimensions satisfy m;;;;'n. Let N(Mp ) be an orthogonal complement of
JMp in MpJ... Then the decomposition is obtained: Mi-=JMifJN(Mp).
Hence, it follows that the space N(Mp) is invariant under the action of
J~ Accordingly we can put in each coordinate neighborhood of M,

(1. 6) JBABjB=JjXCzA,
(1. 7) JBAC.xB= -JjBiA+f.xYCyA,
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where we put Jjx=g(JBj , Cx), J xj = -g(JCx, B) and fxy=g(JCx, Cy).
From these definitions we see that

(1. 8)

By taking account
that

fxy+ fyx=O, Jjx=JXj .

of (1. 1) and (1. 3), it follows from (1. 6) and (1. 7)

(1. 9) {
J.xJ k=!:.k J.xf y=oJ x UJ , J x ,

fx"f,/= -oxY+JxiJiY,

where Jjx=JjygYX, fyx= fy"g"X and gYX is the contravariant component
of gyx- These show that J3+f=O. f being of constant rank, it defines
the so-called f-structure in the normal bundle [lOJ.

If we apply the operator Vj of the covariant differentiation to (1. 6)
and (1. 7) and make use of (1. 1), (1. 2), (1. 4) and these equations,
we get respectively

(1.10) hjixJxh=hjhxJx;,

(1.11) VjJix = hji"f"x,
(1.12) l7·f X-h Jix-h ..xJ i

Y J Y - jiy J' y'

In the sequel, we assume that the ambient Kaehlerian Manifold M is
of constant holomorphic sectional curvature 4c and of real dimension 2m,
which is called a complex space form and denoted by jJ2m(c). Then the
curvature tensor R of M2m (c) is given by

RDCBA=C(gDAgCB-gCAgDB+JDAJCB-JCAJDB-2JDCJBA).

Since the submanifold M is totally real, it follows from equations (1. 6)
roo..J (1. 9) that equations of Gauss, Codazzi and Ricci for M are respectively
obtained:

(1. 13) Rkjih=c (gkhgji- gjhgki) +hkhXhjix- hjhXhkixo
(1.14) f7khjiX-Vjhkix=O,

(1.15) Rjiy.",=C(JjxJiy-JixJjy) +hjrxh{y-hirxh/y,

where Rkjih and R jiyx are the Riemannian curvature tensor of M and
that with respect to the connection induced in the nonnal bundle of M,
respectively. We see from (1. 13) that the Ricci tensor R ji of M can
be expressed as follows:

(1.16) Rji=c(n-1)gji+hXhjix-hjrXh{x, (hx=gjihjiX).

2. Parallel mean curvature vector

Let M be an n-dimensional totally real submanifold III a complex
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space fonn M2m(c) of constant holomorphic curvature 4c. A nonnal
vector field ~= (~",) is called a parallel section in the nonnal bundle if
it satisfies Vj~"'=O, and furthennore a tensor field F on M is said to
be parallel in the nonnal bundle if VjF vanishes identically. In this
section, the f-structure in the normal bundle is assumed to be paralleL
In this case, the equatio~ (1. 12) is reduced to

(2.1) hjryJr"'=hjrzJ/.

Multiplying hiiYJi to (1.10) and summing up for j, i and h and making
use of (2. 1), we:find

hiiYh·· TkJ",k=hHzh'k J .Jyk;.:z:dy ; '" y. ,

which together with (1. 9) gives

hHYhji-c(oyz+f/f.,:&) =hHzhji",·

Thus it follows that

(2.2) hj/fzz=O, i. e., VjJiz=O

for any index x, where we have used (1. 11).

REMARK. We notice from (1. 9) that fyz vanishes identically if m=n.
Thus, an n-dimensional totally real submanifold of a real 2n-dimensional
Kaehlerian manifold has always a trivial f-structure in the nonnal bundle.

Applying Ji to (1.10) and summing up for h, we obtain hjiy=hjrZ
J/JZi with the aid of (1. 9) and (2. 2),· from which we get, taking
the skew-symmetric part of this with respect to indices j and i,

(hjr"'J/) J i",- (hirzJ/) Jjz=O.

Therefore we see, by a direct consequence of (1. 9) and (2. 2), that

hjrzJ/=PYZ"'Jjz,

where PyZz is defined by Pyzz=hj;zJ/J/ and hence it satisfies

(2.3) Pyzzfzw=O.

Denoting P",yz= gzwPZyw, we see that P zyz is symmetric with respect to
all indices, because of (2. 1). It follows from (2. 3) that

(2.4) hj;'"= PYZzJjYJ/,

which together with (1. 9) and (2.3) gives P xyzPXyz= hji"'hHz and

(2.5) hz=pz,

where P"'=PyYz.

From now on we denote the index n+l by *. When x=n+l m
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(2. 4), we have

(2.6) hj;*=Py,,*JjYJ;"'.

From this equation and (2. 4) it is easily seen that

(2.7) hjrXh{*=P",/,P/*J/J/.

Let g be a mean curvature vector field of the submanifold. Namely,
it is defined by

g= giihj{Cxln= hXCxln,

which is independent of the choice of the local field of orthonormal
frames {Cx }' Since the fact that the mean curvature vector is parallel
in the normal bundle is assumed, we may choose a local field {ex} in
such a way that g=aCn+1' where a= I\gll is constant. Because of the
choice of the local field, the parallelism of g yields

(2.8) Ihx=O, x~n+2,
lh*=na.

g being a normal vector field on M, the curvature tensor Rjiyx of the
connection in the normal bundle shows that Rji*x=O for any index x.
Thus the Ricci equation (1. 15) gives

(2.9) hjrXh{*-h;rxh/*=c(Jj*J;x-J;*Jjx).

By the way, we notice from the first equation of (2. 2) that

(2.10) f*x=O,

because of the fact that g is non trivial. For a normal vector field .;-,
let A e be a shape operator of the tangent space Mp at p in the direction
of';-, which is defined by g(AeX, Y)=g(Cl(X, Y),';-) for any tangent
vectors X and Y of Mp, where Cl denotes the second fundamental form
on the submanifold. In particular, the shape operator in the direction
of Cn +1 is denoted by A*. The following property is then obtained.

LEMMA 2.1. Let M be a totally real submanifold with parallel f­
structure in the normal bundle in a complex space form M2m(c). If the
mean curvature vector is non trivial and parallel, and if A * has no

simple roots, then c=O.

Proof. Since the shape operator A *= (h/*) is diagonalizable, a local
field {et} of orthonormal frames in M can be chosen in such a way that

h/*=}.-/5/. Namely, AI> ... , An are eigenvalues of A *. The eqaution (2.9)

is then reduced to
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(X-;(.) h· .x=c(J.*J.x -J.*J .x)t :J t:J :J t t:J'

We put [i] = {j : Ai=AA. For any integer i the assumption implies that
there is an integer j in [i] different from i, and hence Ai=Aj. It yields
cJ/=O, because of (1. 9), and hence C=O by me;;ms of (2.10). This
concludes the proof.

REMARK. Let M be an n-dimensional totally real submanifold in M21t
(c) (c:#=O). It is shown that if the nontrivial mean curvature vector is
parallel in the normal bundle, then the shape operator A * has simple
roots.

Now, the equation (2.9) together with (2.7) yields

(PzuxP yU* - P yuxP zu*) J/JiY=c (Jj*Jix - Ji*Jjx) .

Hence it follows that

(2.11) PZUxPyu* -PYUXPzu*=c(Oz*J/Jix-JzjJjXOy*)

by means of (1. 9), (2. 3) and (2. 10). Contracting· x and y III (2. 11)
and making use of (1. 9), (2. 5) and (2. 8), we find

(2.12) Pzuxpxu*-h*P z**=c(n-1)oz*,

and hence

(2.13) P yx*Pyx*=h*P***+c(n-l).

By multiplying hZ to (2. 11) and summing up for z, it is easily seen
that

h*P *uxP/*- h*Pyuxp*u*=c(h*J/Jix-hXoy*)

by means of (2.3), (2.5), (2.8) and (2. 10). From the fact that P xyz
is symmetric for all indices it follows that

P ux*P/*pXY*=PYXUPYx*P u** +c(h*-P ***),

because ~ is non trivial, where we use (2. 5) and (2. 8).
Substituting (2. 12) into the last equation and making use of (2. 3),

we obtain

(2.14) P ux*P/*PXY*=h*Pz**P*z*+c(n-2)P***+ch*.

LEMMA 2.2. Let M be a totally real submanifold with parallel f-str­

ucture in the normal bundle in M2m(c). If the non trivial mean curvature

vector is parallel, then

(2.15) L1(hj /hii*) =211J7khj/112,

where L1 is the operator of Laplacian.
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Proof. The mean curvature vector being parallel in the normal bundle,
the Laplacian of hj ;* is given, using the Ricci formula for hj ;*, by

(2.16) ilhj ;* = Rjrh{*-Rkj;hhkh*.

On the other hand, it follows from (1. 16) and (2.8) that

Rj;=c(n-l) gj;+h*hj;* -hjrXh{x.

If we substitute this and (1. 13) into (2. 16), we obtain

ilh ,.* =cnh··* -ch*g .. +h*h· *h ,r* - hkhYhkh*h ..J' J' J' Jr. J'Y

+hk·Yhkh*h'h -hhh h h,r*, JY J ry.·

By means of (2. 10), it turns out to be

ilh ..*=cnh ..* -ch*g .. +h*h· *h·r* -hkhYhkh*h ..
J' J' J' Jr. J'Y

-chjrY(J*rJ;y-J;*J/) ,
or, taking account of (1. 9), (2. 3), (2.4) and (2. 7), we have

ilhji*=cnhj ;* -Ch*gji+ h*P zu*Py"*Jj"J;Y
- pzxypzx*hjiY-C(Pyz*JjzJiY- pYJjyJi*).

Thus it follows from (2. 5), (2.6) and (2.8) that

.1hji*=c(n-1)hji*-ch* (gji-Jj*Ji*)
+h*P *P U*J zJY-p ypzX*hzu Y j i zX j iy·

Consequently it follows from the last aquation that

hji*ilhji*=c(n-1)Pxy*pxy*-ch*2+ ch*P ** *
+ h*P *P z* pYU* _ (P Ypzx*) (p puv*)yz u %,x ut'y,

where we have used (1. 9), (2. 3), (2. 6), (2. 7) and (2.8). Substituting
(2.12)"-'(2.14) into the above equation, we obtain hii* Llhji*=O. This
completes the proof.

COROLLARY 2.3. Let M be an m-dimensional totally real submanifold
in M2m (c). If the nontrivial mean curvature is parallel, then (2.15) is
valid.

3. Characterization of submanifolds

This section is devoted to investigating the manifold structure of compact
totally real submaniolds in a complex space form M2m (c). Let M be an
n-dimensional compact totally real submanifold of M2m (c) such that the
f-structure in the normal bundle is parallel. If the non trivial mean
curvature vector 9 on M is parallel, then Lemma 2. 2 says the second
fundamental form hji* in the direction of 9 is parallel, that is, P'khji*=O
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on M. When a function hm for any integer m;?; 1 is given by

h -h i2*h i3* h ;1*m- iI i2 ••• i m '

it is easily seen that hm is constant on M for any integer m, because
hji* is parallel. This implies that each eigenvalue Aj of the shape
operator A * is constant on M. By f.ll, ... , f.la mutually distinct eigenvalues
of A * are denoted. Let nh ..., na be their multiplicities. Since distinct
eigenvalues f.la (a=l, ... , a) is constant, the smooth distribution Ta which
consists of all eigenspaces associated with the eigenvalue can be defiend,
and they are then mutually orthogonal. Furthermore, A * being parallel,
these distributions Ta are parallel and hence completely integrable. Thus,
by means of the de Rham decomposition theorem [3J, the submanifold
M is a product of Riemannian manifolds M1 X ... XMa , where the tangent
bundle of Ma corresponds to Ta. First of all, we shall prove

THEOREM 3.1. Let M be an n-;dimensional compact totally real subm­
anifold imbedded in a 2m-dimensional complex Euclidean space Cm. If
an f-structure in the normal bundle is parallel and if the mean curvature
vector is parallel, then M is a product submanifold M1X ... XMa, where
Ma is a compact na-dimensional totally real submanifold imbedded in Cma
and Ma is contained in a hypersjJhere in Cma.

Since the proof is accomplished by the quite same discussion as that
in [lJ and [6J, it is only sketched. Since the ambient space is complex
Euclidean, it can not admit compact minimal submanifolds. So, the
mean curvature vector g is not trivial. Furthermore, since g is parallel
in the normal bundle, each shape operator Ay satisfies [A*, AyJ=O,
which implies AyTac Ta for any indices y and a. By means of Moore's
Theorem [4J, M=M1 X ... XMa is a product submanifold imbedded in
Cm=Cm.X ... xCm.. Moreover, Ma is a totally real submanifold imbedded
in some Cma, because we can choose an orthonormal basis el*, ... , em*
for JMp and an orthonormal basis e,,+h ... , em, e,,+l*, .•., em* for N(Mp)

in such a way that

hil=hjl=hk/' hi/=O for A=n+1, .•. ,m*.

Let 1Ca (g) be the component of g in the subspace Cma. Then 1Ca (g) is
a parallel mean curvature of Ma in Cma, and Ma is umbilical with
respect to 1Ca(g). Therefore it follows that Ma lies in a small hypersphere
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in Cma which is orthogonal to 'lra(g) , and hence it is a compact minimal
submanifold in the hypersphere. This completes the proof.

As a direct consequence of Lemma 2. 1 and Theorem 3. 1, we have

THEOREM 3.2. Let M be an n-dimensional compact totally real subm­
anifold with parallel f-structure in the normal bundle imbedded in a
complex space form M2m(c). If the non trivial mean curvature vector is
parallel and if the shape operator A* has no simple roots, then c=O. In
particular, if jJ2m(c)=Cm, then M is a product submanifold M1 X ... X
Ma·

THEOREM 3.3. Let M be an n-dimensional compact totally real subm­
anifold with parallel f-structure in the normal bundle in a complex space
form M2m (c). If the non trivial mean curvature vector is parallel and
if M has no zero sectional curvature, then c=O. In particular, if
M2m(c) =Cm, then M must be minimally contained in a hypersphere of
positive curvature in Cm'

THEOREM 3.4. Let M be a compact totally real submanifold with
parallel f-structure in the normal bundle in a complex space form M2m
(c). If the non trivial mean curvature vector is parallel and if the shape
operator A * has mutually distinct eigenvalues, then M is flat and moreover
the second fundamental form is parallel.
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