COMPACT TOTALLY REAL SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR IN A COMPLEX SPACE FORM

U-HANG KI AND HISAO NAKAGAWA

0. Introduction

A submanifold M of a Kaehlerian manifold \overline{M} is said to be *totally real* if each tangent space to M is mapped to the normal space by the complex structure of \overline{M} . The concept was first introduced by Chen and Ogiue [2], who studied their fundamental properties. Many subjects for totally real submanifolds were investigated from various different points of view, as one of which Chen, Houh and Lue [1] and Yachida [8, 9] obtained investigating results of m-dimensional totally real submanifolds with parallel mean curvature vector in 2m-dimensional complex space forms. Furthermore, Urbano [7] and Ohnita [5] recently determined also manifold structures of such a submanifold of positive curvature or of non-negative curvature, respectively.

The purpose of this paper is to investigate compact totally real submanifolds with parallel mean curvature vector of a complex space form.

Manifolds, submanifolds, geometric objects and mappings discussed in this paper are assumed to be differentiable and of C^{∞} .

1. Totally real submanifolds of a Kaehlerian manifold

Let $(\overline{M}, \overline{g})$ be a Kaehlerian manifold of real dimension 2m equipped with an almost complex structure J and a Hermitian metric \overline{g} . Let \overline{M} be covered by a system of coordinate neighborhoods $\{\overline{U}, y^A\}$, where here and in the sequel the following convention on the range of indices are used, unless otherwise stated:

$$A, B, C...=1, ..., n, n+1, ..., 2m,$$

 $h, i, j, ...=1, ..., n,$
 $u, v, w, ...=n+1, ..., 2m.$

Received February 14, 1986.

The summation convention will be used with respect to those system of indices. We then have

(1.1)
$$J_A{}^B J_B{}^C = -\delta_A{}^C, \ J_B{}^C J_A{}^D \bar{g}_{CD} = \bar{g}_{BA},$$

 $\delta_A{}^C$ being the Kronecker delta, $J_B{}^A$, \bar{g}_{BA} the components of J and \bar{g} , respectively. Denoting by ∇_B the operator of covariant differentiation with respect to \bar{g}_{AB} , we get

Let M be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{U; x^h\}$ and immersed isometrically in \overline{M} by the immersion $\phi: M \longrightarrow \overline{M}$. When the argument is local, M need not be distinguished from $\phi(M)$. We represent the immersion ϕ locally by $y^A = y^A(x^h)$ and put $B_j{}^A = \partial_j y^A$, $(\partial_j = \partial/\partial x^j)$, then $B_j = (B_j{}^A)$ are n-linearly independent local tangent vectors of M. We choose 2m-n mutually orthogonal unit normals $C_x = (C_x{}^A)$ to M. Then the induced Riemannian metric g_{jj} on M is given by

$$g_{ii} = \bar{g}_{BC} B_i^B B_i^C.$$

Therefore, by denoting by ∇_j the operator of van der Waerden –Bortolotti covariant differentiation with respect to g_{ji} , the equations of Gauss and Weingarten for M are respectively obtained:

(1.4)
$$\nabla_{j}B_{i}{}^{A} = h_{ji}{}^{x}C_{x}{}^{A}, \quad \nabla_{j}C_{x}{}^{A} = -h_{j}{}^{i}{}_{x}B_{i}{}^{A},$$

where h_{ij}^{x} are the second fundamental forms in the direction of C_x and

(1.5)
$$h_{j}^{h}{}_{x} = h_{jix}g^{ih} = h_{ji}{}^{y}g^{ih}g_{yx},$$

 $g_{yx} = \bar{g}_{BA}C_y{}^BC_x{}^A$ being the metric tensor of the normal bundle and $(g^{ji}) = (g_{ji})^{-1}$.

An *n*-dimensional Riemannian manifold M immersed isometrically in \overline{M} is called a totally real submanifold of \overline{M} if $JM_p \subset M_p^{\perp}$ for each point p of M, where M_p denotes the tangent space of M at p and M_p^{\perp} the normal space to M at p. In this case, JX is a normal vector to M, provided that X is a tangent vector on M. Thus it follows that the dimensions satisfy $m \ge n$. Let $N(M_p)$ be an orthogonal complement of JM_p in M_p^{\perp} . Then the decomposition is obtained: $M_p^{\perp} = JM_p \oplus N(M_p)$. Hence, it follows that the space $N(M_p)$ is invariant under the action of J. Accordingly we can put in each coordinate neighborhood of M,

$$(1.6) J_B{}^AB_j{}^B = J_j{}^xC_x{}^A,$$

(1.7)
$$J_B{}^A C_x{}^B = -J_x{}^i B_i{}^A + f_x{}^y C_y{}^A,$$

where we put $J_{jx} = \bar{g}(JB_j, C_x)$, $J_{xj} = -\bar{g}(JC_x, B_j)$ and $f_{xy} = \bar{g}(JC_x, C_y)$. From these definitions we see that

$$(1.8) f_{xy} + f_{yx} = 0, \ J_{ix} = J_{xi}.$$

By taking account of (1.1) and (1.3), it follows from (1.6) and (1.7) that

(1.9)
$$\begin{cases} J_{j}^{x}J_{x}^{h} = \delta_{j}^{h}, \ J_{j}^{x}f_{x}^{y} = 0, \\ f_{x}^{z}f_{x}^{y} = -\delta_{x}^{y} + J_{x}^{i}J_{i}^{y}, \end{cases}$$

where $J_j^x = J_{jy}g^{yx}$, $f_y^x = f_{yx}g^{zx}$ and g^{yx} is the contravariant component of g_{yx} . These show that $f^3+f=0$. f being of constant rank, it defines the so-called f-structure in the normal bundle [10].

If we apply the operator V_j of the covariant differentiation to (1.6) and (1.7) and make use of (1.1), (1.2), (1.4) and these equations, we get respectively

$$(1. 10) h_{ii}{}^{x}J_{xh} = h_{ih}{}^{x}J_{xi},$$

(1. 11)
$$\nabla_{j}J_{i}^{x} = h_{ji}^{z}f_{z}^{x},$$

(1. 12) $\nabla_{j}f_{y}^{x} = h_{ji}y^{Jix} - h_{ji}^{x}J_{y}^{i}.$

In the sequel, we assume that the ambient Kaehlerian Manifold \overline{M} is of constant holomorphic sectional curvature 4c and of real dimension 2m, which is called a *complex space form* and denoted by $\overline{M}^{2m}(c)$. Then the curvature tensor \overline{R} of $\overline{M}^{2m}(c)$ is given by

$$\bar{R}_{DCBA} = c(\bar{g}_{DA}\bar{g}_{CB} - \bar{g}_{CA}\bar{g}_{DB} + J_{DA}J_{CB} - J_{CA}J_{DB} - 2J_{DC}J_{BA}).$$

Since the submanifold M is totally real, it follows from equations (1.6) \sim (1.9) that equations of Gauss, Codazzi and Ricci for M are respectively obtained:

$$(1.13) R_{kiih} = c(g_{kh}g_{ii} - g_{ih}g_{ki}) + h_{kh}^{x}h_{jix} - h_{jh}^{x}h_{kix},$$

(1.15)
$$R_{jiyx} = c(J_{jx}J_{iy} - J_{ix}J_{jy}) + h_{jrx}h_{i}^{r}_{y} - h_{irx}h_{j}^{r}_{y},$$

where R_{kiih} and R_{iivx} are the Riemannian curvature tensor of M and that with respect to the connection induced in the normal bundle of M, respectively. We see from (1.13) that the Ricci tensor R_{ii} of M can be expressed as follows:

$$(1.16) R_{ji} = c(n-1)g_{ji} + h^x h_{jix} - h_{jr}^x h_{ir}^r, (h_x = g^{ji}h_{ji}x).$$

2. Parallel mean curvature vector

Let M be an n-dimensional totally real submanifold in a complex

space form $\overline{M}^{2m}(c)$ of constant holomorphic curvature 4c. A normal vector field $\xi = (\xi^x)$ is called a *parallel section* in the normal bundle if it satisfies $\nabla_j \xi^x = 0$, and furthermore a tensor field F on M is said to be *parallel* in the normal bundle if $\nabla_j F$ vanishes identically. In this section, the f-structure in the normal bundle is assumed to be parallel. In this case, the equation (1.12) is reduced to

$$(2.1) h_{jry}J^{rx} = h_{jr}^{x}J_{y}^{r}.$$

Multiplying $h^{jiy}J_y^h$ to (1.10) and summing up for j, i and h and making use of (2.1), we find

$$h^{jiy}h_{jix}J_{yh}J^{xh} = h^{jix}h_{jhx}J_{yi}J^{yh},$$

which together with (1.9) gives

$$h^{jiy}h_{jix}(\delta_y^x+f_y^zf_z^x)=h^{jix}h_{jix}.$$

Thus it follows that

(2.2)
$$h_{ii}^{x}f_{z}^{x}=0$$
, i.e., $\nabla_{i}J_{i}^{x}=0$

for any index x, where we have used (1.11).

REMARK. We notice from (1.9) that f_y^x vanishes identically if m=n. Thus, an n-dimensional totally real submanifold of a real 2n-dimensional Kaehlerian manifold has always a trivial f-structure in the normal bundle.

Applying J_y^h to (1.10) and summing up for h, we obtain $h_{jiy} = h_{jr}^x J_y^r J_{xi}$ with the aid of (1.9) and (2.2), from which we get, taking the skew-symmetric part of this with respect to indices j and i,

$$(h_{jr}^{x}J_{y}^{r})J_{ix}-(h_{ir}^{x}J_{y}^{r})J_{jx}=0.$$

Therefore we see, by a direct consequence of (1.9) and (2.2), that

$$h_{jr}^{x}J_{y}^{r}=P_{yz}^{x}J_{j}^{z},$$

where P_{yz}^{x} is defined by $P_{yz}^{x} = h_{ji}^{x} J_{y}^{j} J_{z}^{i}$ and hence it satisfies

$$(2.3) P_{yx}^{x} f_{x}^{w} = 0.$$

Denoting $P_{xyz} = g_{zw}P_{xy}^{w}$, we see that P_{xyz} is symmetric with respect to all indices, because of (2.1). It follows from (2.3) that

$$(2.4) h_{ji} = P_{yz} J_j J_i J_i ,$$

which together with (1.9) and (2.3) gives $P_{xyz}P^{xyz} = h_{ji}{}^x h^{ji}{}_x$ and

$$(2.5) h^x = P^x,$$

where $P^x = P_y^{yx}$.

From now on we denote the index n+1 by *. When x=n+1 in

(2.4), we have

$$(2.6) h_{ji}^* = P_{vz}^* J_j^y J_i^z.$$

From this equation and (2.4) it is easily seen that

$$(2.7) h_{jr}{}^{x}h_{i}{}^{r*} = P_{zu}{}^{x}P_{y}{}^{u*}J_{j}{}^{z}J_{i}{}^{y}.$$

Let \mathcal{J} be a mean curvature vector field of the submanifold. Namely, it is defined by

$$\mathcal{J} = g^{ji} h_{ji} {}^{x} C_{x} / n = h^{x} C_{x} / n,$$

which is independent of the choice of the local field of orthonormal frames $\{C_x\}$. Since the fact that the mean curvature vector is parallel in the normal bundle is assumed, we may choose a local field $\{e_x\}$ in such a way that $\mathcal{J}=aC_{n+1}$, where $a=||\mathcal{J}||$ is constant. Because of the choice of the local field, the parallelism of \mathcal{J} yields

(2.8)
$$\begin{cases} h^x = 0, & x \ge n+2, \\ h^* = na. \end{cases}$$

I being a normal vector field on M, the curvature tensor R_{jiyx} of the connection in the normal bundle shows that $R_{ji*x}=0$ for any index x. Thus the Ricci equation (1.15) gives

$$(2.9) h_{ir}^{x} h_{ir}^{r*} - h_{ir}^{x} h_{ir}^{r*} = c(J_{i*} J_{i}^{x} - J_{i*} J_{i}^{x}).$$

By the way, we notice from the first equation of (2.2) that

$$(2.10) f_*^{x} = 0,$$

because of the fact that \mathcal{G} is non trivial. For a normal vector field ξ , let A_{ξ} be a shape operator of the tangent space M_{p} at p in the direction of ξ , which is defined by $g(A_{\xi}X,Y) = \bar{g}(\sigma(X,Y),\xi)$ for any tangent vectors X and Y of M_{p} , where σ denotes the second fundamental form on the submanifold. In particular, the shape operator in the direction of C_{n+1} is denoted by A^* . The following property is then obtained.

LEMMA 2.1. Let M be a totally real submanifold with parallel f-structure in the normal bundle in a complex space form $\overline{M}^{2m}(c)$. If the mean curvature vector is non trivial and parallel, and if A^* has no simple roots, then c=0.

Proof. Since the shape operator $A^* = (h_j^{i*})$ is diagonalizable, a local field $\{e_i\}$ of orthonormal frames in M can be chosen in such a way that $h_j^{i*} = \lambda_j \delta_j^i$. Namely, $\lambda_1, ..., \lambda_n$ are eigenvalues of A^* . The equation (2.9) is then reduced to

$$(\lambda_i - \lambda_i) h_{ii}^x = c(J_i^* J_i^x - J_i^* J_i^x).$$

We put $[i] = \{j : \lambda_i = \lambda_j\}$. For any integer i the assumption implies that there is an integer j in [i] different from i, and hence $\lambda_i = \lambda_j$. It yields $cJ_i^*=0$, because of (1.9), and hence c=0 by means of (2.10). This concludes the proof.

REMARK. Let M be an n-dimensional totally real submanifold in \overline{M}^{2n} (c) $(c \neq 0)$. It is shown that if the nontrivial mean curvature vector is parallel in the normal bundle, then the shape operator A^* has simple roots.

Now, the equation (2.9) together with (2.7) yields

$$(P_{zu}^{x}P_{y}^{u*}-P_{yu}^{x}P_{z}^{u*})J_{i}^{z}J_{i}^{y}=c(J_{i*}J_{i}^{x}-J_{i*}J_{i}^{x}).$$

Hence it follows that

$$(2.11) P_{zu}^{x} P_{y}^{u*} - P_{yu}^{x} P_{z}^{u*} = c \left(\delta_{z*} J_{y}^{i} J_{i}^{x} - J_{z}^{j} J_{j}^{x} \delta_{y*} \right)$$

by means of (1.9), (2.3) and (2.10). Contracting x and y in (2.11) and making use of (1.9), (2.5) and (2.8), we find

$$(2.12) P_{zux}P^{xu*} - h^*P_z^{**} = c(n-1)\delta_{z*},$$

and hence

$$(2.13) P_{yx} P^{yx} = h^* P_*^{**} + c(n-1).$$

By multiplying h^z to (2.11) and summing up for z, it is easily seen that

$$h^*P_{*u}{}^xP_y{}^{u*} - h^*P_{yu}{}^xP_*{}^{u*} = c\left(h^*J_y{}^iJ_i{}^x - h^x\delta_{y*}\right)$$

by means of (2.3), (2.5), (2.8) and (2.10). From the fact that P_{xyz} is symmetric for all indices it follows that

$$P_{ux*}P_{y}^{u*}P^{xy*} = P_{yx}^{u}P^{yx*}P_{u}^{**} + c(h^* - P_{*}^{**}),$$

because f is non trivial, where we use (2.5) and (2.8).

Substituting (2.12) into the last equation and making use of (2.3), we obtain

$$(2.14) P_{ux*}P_y^{u*}P^{xy*} = h^*P_{z*}^*P_*^{z*} + c(n-2)P_{**}^* + ch^*.$$

LEMMA 2.2. Let M be a totally real submanifold with parallel f-structure in the normal bundle in $\overline{M}^{2m}(c)$. If the non trivial mean curvature vector is parallel, then

(2.15)
$$\Delta(h_{ji}^*h^{ji*}) = 2||\nabla_k h_{ji}^*||^2,$$

where Δ is the operator of Laplacian.

Proof. The mean curvature vector being parallel in the normal bundle, the Laplacian of h_{ji}^* is given, using the Ricci formula for h_{ji}^* , by

(2.16)
$$\Delta h_{ji}^* = R_{jr} h_i^{r*} - R_{kjih} h^{kh*}.$$

On the other hand, it follows from (1.16) and (2.8) that

$$R_{ii} = c(n-1)g_{ii} + h^*h_{ii}^* - h_{ir}^x h_{ir}^r$$

If we substitute this and (1.13) into (2.16), we obtain

$$\Delta h_{ji}^* = cnh_{ji}^* - ch^*g_{ji} + h^*h_{jr}^*h_{ir}^* - h_{kh}^y h^{kh}^*h_{jiy}$$

$$+ h_{ki}^y h^{kh}^*h_{jhy} - h_{j}^{hy}h_{rhy}^*h_{ir}^{r*}.$$

By means of (2.10), it turns out to be

$$\Delta h_{ji}^* = cnh_{ji}^* - ch^*g_{ji} + h^*h_{jr}^*h_{ir}^{r*} - h_{kh}^{y}h^{kh*}h_{jiy} - ch_{jr}^{y}(J_*^{r}J_{iy} - J_{i*}J_{y}^{r}),$$

or, taking account of (1.9), (2.3), (2.4) and (2.7), we have

$$\begin{split} \varDelta h_{ji}{}^* &= cnh_{ji}{}^* - ch^*g_{ji} + h^*P_{zu}{}^*P_y{}^{u*}J_j{}^zJ_i{}^y \\ &- P_{zx}{}^yP^{zx*}h_{jiy} - c(P_{yz}{}^*J_j{}^zJ_i{}^y - P^yJ_{jy}J_{i*}). \end{split}$$

Thus it follows from (2.5), (2.6) and (2.8) that

$$\Delta h_{ji}^* = c(n-1)h_{ji}^* - ch^*(g_{ji} - J_{j*}J_{i*}) + h^*P_{zu}^*P_y^{u*}J_j^zJ_i^y - P_{zx}^yP^{zx*}h_{jiy}.$$

Consequently it follows from the last equation that

$$h^{ji*} \Delta h_{ji}^* = c(n-1) P_{xy*} P^{xy*} - ch^{*2} + ch^* P_{**}^* + h^* P_{yz}^* P_{uz}^* P^{yu*} - (P_{xx}^y P^{zx*}) (P_{uv}^y P^{uv*}),$$

where we have used (1.9), (2.3), (2.6), (2.7) and (2.8). Substituting $(2.12)\sim(2.14)$ into the above equation, we obtain h^{ii*} $\Delta h_{ji*}=0$. This completes the proof.

COROLLARY 2.3. Let M be an m-dimensional totally real submanifold in $\overline{M}^{2m}(c)$. If the nontrivial mean curvature is parallel, then (2.15) is valid.

3. Characterization of submanifolds

This section is devoted to investigating the manifold structure of compact totally real submaniolds in a complex space form $\overline{M}^{2m}(c)$. Let M be an n-dimensional compact totally real submanifold of $\overline{M}^{2m}(c)$ such that the f-structure in the normal bundle is parallel. If the non trivial mean curvature vector f on M is parallel, then Lemma 2.2 says the second fundamental form h_{ji} in the direction of f is parallel, that is, $\nabla_k h_{ji} = 0$

on M. When a function h_m for any integer $m \ge 1$ is given by

$$h_m = h_{i_1}^{i_2*} h_{i_2}^{i_3*} \dots h_{i_m}^{i_1*},$$

it is easily seen that h_m is constant on M for any integer m, because h_{ji}^* is parallel. This implies that each eigenvalue λ_j of the shape operator A^* is constant on M. By $\mu_1, \dots, \mu_{\alpha}$ mutually distinct eigenvalues of A^* are denoted. Let n_1, \dots, n_{α} be their multiplicities. Since distinct eigenvalues μ_a ($a=1,\dots,\alpha$) is constant, the smooth distribution T_a which consists of all eigenspaces associated with the eigenvalue can be defiend, and they are then mutually orthogonal. Furthermore, A^* being parallel, these distributions T_a are parallel and hence completely integrable. Thus, by means of the de Rham decomposition theorem [3], the submanifold M is a product of Riemannian manifolds $M_1 \times \dots \times M_{\alpha}$, where the tangent bundle of M_a corresponds to T_a . First of all, we shall prove

THEOREM 3.1. Let M be an n-dimensional compact totally real submanifold imbedded in a 2m-dimensional complex Euclidean space C_m . If an f-structure in the normal bundle is parallel and if the mean curvature vector is parallel, then M is a product submanifold $M_1 \times ... \times M_a$, where M_a is a compact n_a -dimensional totally real submanifold imbedded in C_{m_a} and M_a is contained in a hypersphere in C_{m_a} .

Since the proof is accomplished by the quite same discussion as that in [1] and [6], it is only sketched. Since the ambient space is complex Euclidean, it can not admit compact minimal submanifolds. So, the mean curvature vector \mathcal{J} is not trivial. Furthermore, since \mathcal{J} is parallel in the normal bundle, each shape operator A_y satisfies $[A^*, A_y] = 0$, which implies $A_y T_a \subset T_a$ for any indices y and a. By means of Moore's Theorem [4], $M = M_1 \times ... \times M_a$ is a product submanifold imbedded in $C_m = C_m \times ... \times C_m$. Moreover, M_a is a totally real submanifold imbedded in some C_{ma} , because we can choose an orthonormal basis $e_{1*}, ..., e_{m*}$ for M_p and an orthonormal basis $e_{n+1}, ..., e_m$, $e_{n+1*}, ..., e_{m*}$ for $N(M_p)$ in such a way that

$$h_{ij}^{k} = h_{jk}^{i} = h_{ki}^{j}, h_{ij}^{\lambda} = 0 \text{ for } \lambda = n+1, ..., m^{*}.$$

Let $\pi_a(f)$ be the component of f in the subspace C_{m_a} . Then $\pi_a(f)$ is a parallel mean curvature of M_a in C_{m_a} , and M_a is umbilical with respect to $\pi_a(f)$. Therefore it follows that M_a lies in a small hypersphere

in C_{m_a} which is orthogonal to $\pi_a(\mathcal{J})$, and hence it is a compact minimal submanifold in the hypersphere. This completes the proof.

As a direct consequence of Lemma 2.1 and Theorem 3.1, we have

THEOREM 3.2. Let M be an n-dimensional compact totally real submanifold with parallel f-structure in the normal bundle imbedded in a complex space form $\overline{M}^{2m}(c)$. If the non trivial mean curvature vector is parallel and if the shape operator A^* has no simple roots, then c=0. In particular, if $\overline{M}^{2m}(c) = \mathbb{C}_m$, then M is a product submanifold $M_1 \times ... \times M_a$.

THEOREM 3.3. Let M be an n-dimensional compact totally real submanifold with parallel f-structure in the normal bundle in a complex space form $\overline{M}^{2m}(c)$. If the non trivial mean curvature vector is parallel and if \overline{M} has no zero sectional curvature, then c=0. In particular, if $\overline{M}^{2m}(c)=C_m$, then M must be minimally contained in a hypersphere of positive curvature in C_m .

Theorem 3.4. Let M be a compact totally real submanifold with parallel f-structure in the normal bundle in a complex space form \overline{M}^{2m} (c). If the non trivial mean curvature vector is parallel and if the shape operator A^* has mutually distinct eigenvalues, then M is flat and moreover the second fundamental form is parallel.

Bibliography

- 1. B. Y. Chen, C-S. Houh and H-S. Lue, *Totally real submanifolds*, J. Differential Geometry, 12(1977), 473-480.
- 2. B.Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193(1974), 257-266.
- 3. S. Kobayashi and K. Nomizu, Foundations of differential geometry, I, II., Interscience Publ. New York, 1963, 1969.
- 4. J.D. Moore, Isometric immersions of Riemannian products, J. Differential Geometry, 5(1971), 159-168.
- 5. Y. Ohnita, Totally real submanifolds with nonnegative sectional curvature, preprint.
- B. Smyth, Submanifolds of constant mean curvature, Math. Ann., 205(197 3), 265-280.
- 7. Urbano, Totally real minimal submanifolds of a complex projective space, preprint.

- 8. I. Yachida, Totally real submanifolds of the complex number space, preprint.
- 9. I. Yachida, Totally real submanifolds of the complex space form, preprint.
- 10. K. Yano, On a structure defined by a tensor field of type (1,1) satisfying $f^3+f=0$, Tensor N.S., 14(1963), 99-109.
- 11. K. Yano and M. Kon, Anti-invariant submanifolds, Marcel Dekker Ins., 1976.

Kyungpook University Taegu 635, Korea and University of Tsukuba Ibaraki 305, Japan