LIFTS OF DERIVATIONS TO THE TANGENT BUNDLE OF P'-VELOCITIES

MANUEL DE LEÓN AND MODESTO SALGADO

Introduction

Let M be an n-dimensional C^{∞} manifold and $T_p{}^rM$ the tangent bundle of p^r -velocities of M. In this paper, the λ -lift to $T_p{}^rM$ of derivations of the tensorial algebra on M is defined and their properties are established. The results obtained generalize those of K. Yano and S. Ishihara for the tangent bundle TM of M [6], C. Yuen for the tangent bundle of order 2, T^2M , of M [7] and ourselves for the frame bundle FM of M [4].

1. The tangent bundle of p^r -velocities

Let M be n-dimensional manifold. We denote by $T_p{}^rM$ the set of all r-jets at 0 of differentiable mappings of open neighborhoods of 0 in \mathbf{R}^p onto open subsets of M. Let $\pi:T_p{}^rM\longrightarrow M$ be the target projection π $(j_0{}^r\varphi)=\varphi(0)$. Then, $\pi:T_p{}^rM\longrightarrow M$ has a natural bundle structure over M. $T_p{}^rM$ is called the tangent bundle of p^r -velocities of M [5]. Let us observe that $T_1{}^1M=TM$ is nothing but the tangent bundle of M and M and M is the tangent bundle of order M of M.

Let N(r, p) denote the set of all p-tuples $\nu = (\nu_1, ..., \nu_p)$ of non-negative integers such that $|\nu| = \nu_1 + \cdots + \nu_p < r$. Every chart (U, x^i) on M induces a chart

$$\{\pi^{-1}U = T_{p}^{r}U, x_{i}^{(\nu)}, \nu \in N(p, r)\}$$

on $T_{p}^{r}M$, called the induced chart, where

$$x_{i}^{(\nu)}(j_{0}^{r}\varphi) = \frac{1}{\nu!}D_{\nu}(x^{i}\cdot\varphi) (0)$$

If f is a differentiable function on M and $\nu \in N(p, r)$, then we define the ν -lift of f as the function $f^{(\nu)}$ on $T_p{}^rM$ given by

Received January 29, 1986.

$$f^{(\nu)}(j_0^r \varphi) = \frac{1}{\nu!} D_{\nu}(f \circ \varphi) \quad (0)$$

It is convenient to define $f^{(\nu)}=0$ if $\nu \in N(p,r)$. It is easy to verify that

$$(af+bg)^{(\nu)} = af^{(\nu)} + bg^{(\nu)}$$
$$(fg)^{(\nu)} = \sum_{\mu \in N(p,r)} f^{(\mu)}g^{(\nu-\mu)}$$

for all functions f, g and all real numbers a, b. Vector fields on $T_p^r M$ are characterized by their actions on functions of type $f^{(y)}$. More precisely, we have

PROPOSITION 1.1. Let X, Y be vector fields on T_p^rM such that $\widetilde{X}f^{(\wp)} = \widetilde{Y}f^{(\wp)}$, for every function f on M and all $\wp \in N(p,r)$. Then $\widetilde{X} = \widetilde{Y}$.

The proof is a straighforward verification and can be found in [5]. Moreover, A. Morimoto has proved the following proposition

PROPOSITION 1.2. If X is a vector field on M, then for every $\lambda \in N(p,r)$ there exists one and only one vector field $X^{(\lambda)}$ on $T_p{}^rM$ such that

$$X^{(\lambda)}f^{(\nu)} = (Xf)^{(\nu-\lambda)}$$

for any function f on M and $\nu \in N(p, r)$.

 $X^{(\lambda)}$ is called the λ -lift of X to T_p^rM . It is convenient to define $X^{(\lambda)} = 0$ if $\lambda \in N(p, r)$.

One can easily verify that

$$[X^{(\lambda)}, Y^{(\mu)}] = [X, Y]^{(\lambda+\mu)}$$

for any vector fields X, Y on M and λ , $\mu \in N(p, r)$.

By a similar device of those used in the Proposition 1.1, we have

PROPOSITION 1.3. Let \tilde{F} , \tilde{G} be tensor fields of type (1,s) s>0, on T_b , M, such that

$$\tilde{F}(X_1^{(\lambda_1)},...,X_s^{(\lambda_s)}) = \tilde{G}(X_1^{(\lambda_1)},...,X_s^{(\lambda_s)})$$

for any arbitrary vector fields $X_1, ..., X_s$ on $M, \lambda_1, ..., \lambda_s \in N(p, r)$. Then $\widetilde{F} = \widetilde{G}$.

A. Morimoto has proved the following proposition [5]

PROPOSITION 1.4. Let F be a tensor field of type (1, s), s>0, on M. Then, for every $\lambda \in N(p, r)$, there exists one and only one tensor field $F^{(\lambda)}$ of type (1, s) on T_p^TM such that

$$F^{(\lambda)}(X_1^{(\mu_1)},...,X_s^{(\mu_s)}) = (F(X_1,...,X_s))^{(\lambda+\mu)}$$

for any vector fields $X_1, ..., X_s$ on M, and $\mu_1, ..., \mu_s \in N(p, r)$, where $\mu = \mu_1 + \cdots + \mu_s$.

 $F^{(\lambda)}$ is called the λ -lift of F to $T_p{}^rM$. As above, it is convenient to define $F^{(\lambda)}=0$, if $\lambda \in N(p,r)$. If $\lambda=(0,...,0)$, then the λ -lift $X^{(\lambda)}$ (resp., $F^{(\lambda)}$) to $T_p{}^rM$ of a vector field X (resp., a tensor field F of type (1,s) on M, will be called the *complete lift* to $T_p{}^rM$ of X (resp., F) and denoted by X^C (resp., F^C).

Now, we consider a linear connection ∇ on M. In [5], A. Morimoto has proved the following result

PROPOSITION 1.5. There exists one and only one linear connection ∇^{C} on $T_{p}^{r}M$ defined by the following condition

$$abla^{C}_{Y(\lambda)} Y^{(\mu)} = (
abla_{X} Y)^{(\lambda+\mu)},$$

for any vector field X on M and $\lambda, \mu \in N(p, r)$.

The connection ∇^C in the Proposition 1.5 is called the *complete lift* of ∇ to $T_b{}^rM$.

We remark that the r-frame bundle F^rM of M is an open and dense subset of the tangent bundle $T_n{}^rM$ of n^r -velocities. Then, we can consider the restriction to F^rM of the λ -lifts $f^{(\lambda)}$, $X^{(\lambda)}$, $F^{(\lambda)}$ defined above for $T_n{}^rM$, which will be called and denoted in the same manner. J. Gancarzewicz [2] has proved the following proposition

PROPOSITION 1.6. Let \tilde{F} , \tilde{G} be tensor fields of type (1, s), s>0, on F^rM such that

$$\tilde{F}(X_1^C, ..., X_s^C) = \tilde{G}(X_1^C, ..., X_s^C),$$

 $X_1, ..., X_s$ vector fields on M. Then, $\tilde{F} = \tilde{G}$.

2. Lifts of derivations to $T_{p}^{r}M$

Let $\mathcal{T}(M) = \sum \mathcal{T}_s^r(M)$ be the tensorial algebra of the tensor fields on M. By a derivation of $\mathcal{T}(M)$, we shall mean a mapping $D: \mathcal{T}(M) \longrightarrow \mathcal{T}(M)$ which satisfies the following conditions:

- (a) $D: \mathcal{C}_{s}^{r}(M) \longrightarrow \mathcal{C}_{s}^{r}(M)$
- (b) D(S+T) = DS + DT, $S, T \in \mathcal{T}_s^r(M)$
- (c) $D(S \otimes T) = (DS) \otimes T + S \otimes (DT)$, S, $T \in \mathcal{T}(M)$
- (d) D commutes with every contraction of a tensor field

The set $\mathcal{D}(M)$ of all derivations of $\mathcal{T}(M)$ forms a Lie algebra over

R of an infinite dimension with respect to the natural addition and multiplication and the bracket operation defined by [D, D']K = D(D'K) - D'(DK). Two derivations D and D' of $\mathcal{C}(M)$ coincide if and only if they coincide on $\mathcal{C}_0^0(M)$ and $\mathcal{C}_0^1(M)$, i.e., on the functions and the vector fields on M. Every derivation D of $\mathcal{C}(M)$ can be decomposed uniquely as follows

$$D = \ell_X + i_F$$

where \mathcal{L}_X is the Lie derivative with respect to a vector field X and i_F is the derivation defined by a tensor field F of type (1,1) on M. The set $\mathcal{L}(M)$ of Lie derivatives \mathcal{L}_X forms a subalgebra of the Lie algebra $\mathcal{D}(M)$. On the other hand, the set $\mathcal{E}(M)$ of all derivations i_F is an ideal of the Lie algebra $\mathcal{D}(M)$.

PROPOSITION 2.1. Two derivations D and D' of $\mathcal{C}(T_p^rM)$ coincide if and only if

- (a) $Df^{(\lambda)} = D'f^{(\lambda)}$, for any function f on M and $\lambda \in N(p,r)$
- (b) $DY^{(\lambda)} = D'Y^{(\lambda)}$, for any vector field Y on M and $\lambda \in N(p, r)$.

Proof. It is sufficient to show that if $Df^{(\lambda)} = 0$, $DY^{(\lambda)} = 0$, for any function f and any vector field Y on M, $\lambda \in N(p, r)$, then D=0. If $D=\mathcal{L}_{\bar{X}}+i\bar{p}$, then

$$Df^{(\lambda)} = \ell_{\tilde{X}} f^{(\lambda)} = \tilde{X} f^{(\lambda)} = 0,$$

on M and $\lambda \in N(p,r)$. Taking into account Proposition 1.1, we deduce $\tilde{X}=0$. Thus, $D=i_{\tilde{F}}$ and hence

$$DY^{(2)} = i_{\tilde{F}}Y^{(2)} = \tilde{F}Y^{(2)} = 0$$

for any vector field Y on M and $\lambda \in N(p, r)$. Then, from Proposition 1.3, we deduce $\tilde{F} = 0$.

REMARK. If we consider the case of F^rM , the part (b) of the proposition 2.1 can be established as follows

(b)'
$$DY^{c}=D'Y^{c}$$
, for every vector field Y on M.

Let $D = \mathcal{L}_X + i_F$ be a derivation of $\mathcal{T}(M)$, where X is a vector field and F is a tensor field of type (1,1) on M. We define, for every $\lambda \in N(p,r)$, the λ -lift $D^{(\lambda)}$ of D to T_p^rM by

$$D^{(\lambda)} = \mathcal{L}_X(\lambda) + i_F(\lambda)$$

Taking into account Propositions 1.2 and 1.4, we have

Proposition 2.2
$$D^{(\lambda)}f^{(\mu)} = (Df)^{(\mu-\lambda)}$$

$$D^{(\lambda)}Y^{(\mu)} = (DY)^{(\lambda+\mu)},$$

for any function f and any vector field Y on M, and $\mu \in N(p,r)$.

The complete lift D^{C} of D to $T_{b}^{r}M$ is defined by

$$D^{C} = \mathcal{L}_{X}c + i_{F}c$$

Particularizing the Proposition 2.2 to this case, we obtain

(2.1)
$$D^{C}f^{(\mu)} = (Df)^{(\mu)}$$
$$D^{C}Y^{C} = (DY)^{C}.$$

for any function f and any vector field Y on M. As a direct consequence of Propositions 2.1 and 2.2 and taking into account the above remark, we easily deduce

THEOREM 2.3. The mapping $D \longrightarrow D^c$ is a Lie algebra homomorphism of $\mathcal{D}(M)$ into $\mathcal{D}(T_b^r M)$.

REMARK. The mapping $D \longrightarrow D^{(\lambda)}$, $\lambda \neq (0, ..., 0)$, is not a Lie algebra homomorphism because

$$[X^{(\lambda)}, Y^{(\lambda)}] = [X, Y]^{(2\lambda)},$$

taking into account (1.1).

Next, we shall consider the lifts of covariant differentiations. Let ∇ be a linear connection on M. Then, the covariant differentiation ∇_X with respect to a vector field X on M is a derivation of $\mathcal{T}(M)$. Since $\nabla_X f = Xf$ for any function f on M, we have the decomposition

$$\nabla_{\mathbf{X}} = \mathcal{L}_{\mathbf{X}} + i_{\mathbf{F}}$$

where F is a tensor field of type (1,1) on M. We notice that $FY = \nabla_X Y - [X,Y] = \hat{\mathcal{V}}_Y X$, that is, $F = \hat{\mathcal{V}} X$, where $\hat{\mathcal{V}}$ denotes the opposite connection of \mathcal{V} . Let $(\mathcal{V}_X)^{(\lambda)}$ be the λ -lift of \mathcal{V}_X to $T_p^r M$. Taking into account the proposition 2.2, we have

(2.2)
$$(\nabla_X)^{(\lambda)} f^{(\mu)} = (\nabla_X f)^{(\mu-\lambda)} = (Xf)^{(\mu-\lambda)}$$
$$(\nabla_X)^{(\lambda)} Y^{(\mu)} = (\nabla_X Y)^{(\lambda+\mu)},$$

for any function f and any vector field Y on M, and $\mu \in N(p, r)$.

On the other hand, we can consider the complete lift $abla^c$ of abla to $T_p{}^rM$ and the covariant differentiation $abla_X{}^c(\lambda)$ with respect to the λ -lift $X^{(\lambda)}$ of X to $T_p{}^rM$. Taking into account the propositions 1.2 and 1.5, we have

$$\nabla_X^C(\lambda) Y^{(\mu)} = (\nabla_X Y)^{(\lambda+\mu)}$$

for any function f and any vector field Y on M, and $\mu \in N(p, r)$.

PROPOSITION 2.4. $(\nabla_X)^{(\lambda)} = \nabla_X^c(\lambda)$ for any vector field X on M and $\lambda \in N(p,r)$. In particular, $(\nabla_X)^c = \nabla_X c^c$.

REMARK. The results contained in this paper holds good, making small changes, for the r-frame bundle of M. On the other hand, they can be extended to the case of bundles of infinitely near points [5].

References

- 1. J. Etayo, On a complete lifting of derivation, Tensor N.S., 38(1982), 169
- 2. J. Gancarzewicz, Complete lifts of tensor fields of type (1, k) to natural bundles, Zeszyty Naukowe UJ, Prace Matematyczne, 23, (1982), 51-84.
- 3. S. Kobayashi-K. Nomizu, Fundations of Differential Geometry, Vol. 1, Interscience Publ, New York, 1963.
- 4. M. de Leon-M. Salgado, Lifts of derivations to the frame bundle, Preprint.
- A. Morimoto, Prolongation of geometric structures, Mathematical Institut, Nagoya University (Japan), Sept. 1969.
- 6. K. Yano-S. Ishihara, Tangent and Cotangent Bundles, Differential Geometry, Marcel Dekker, New York, 1973.
- C. Yuen. Relévements des dérivations et des structures aux fibrés tangents, Kodai Math. Sem. Rep., 28(1977), 182-196.

Departamento de Geometría y Topología Facultad de Matemáticas Universidad de Santiago de Compostela Spain