ORDERS OF $END_D(M)$ AND $U(END_D(M))$ FOR f. g. TORSION MODULE M OVER p. i. d. D

EUNG TAI KIM

1. Introduction

In this paper we find the orders of the endomorphism ring $\operatorname{End}_D(M)$ and its unit group $U(\operatorname{End}_D(M))$ for the finitely generated torsion module over the principal ideal domain D whose residue class fields modulo prime ideals in D are all finite.

If $M(\neq 0)$ is a finitely generated module over the p.i.d.D, M is the direct sum of cyclic modules: $M = Dz_1 \oplus \cdots \oplus Dz_s$ such that

ann
$$z_1 \supseteq ann z_2 \supseteq \cdots \supseteq ann z_s$$
, ann $z_i \neq D$

and the ideals ann z_i are unique for module M. If the module M is the torsion module and if we put ann $z_i = (d_i)$, d_i are nonzeros, nonunits and $d_1|d_2|\cdots|d_s$. We call d_1,d_2,\cdots,d_s the invariant factors of the torsion module M. If $d_i = p_{i,1}^{e_{i,1}}p_{i,2}^{e_{i,2}}\cdots p_{i,t_i}^{e_{i,t_i}}$ is the prime-power decomposition of d_i , then there exist $x_{i,1}, x_{i,2}, \cdots, x_{i,t_i} \in M$ such that

$$Dx_i = Dx_{i,1} \oplus \cdots \oplus Dx_{i,t_i}$$
, ann $x_{i,j} = (p_{i,j}e_{i,j})$.

We call $p_{i,j}^{e_{i,j}}(1 \le i \le s, 1 \le j \le t_i)$ the elementary divisors of M.

Now let D be a principal ideal domain. We denote the cardinal number of the residue class ring D/(a) modulo ideal $(a) \subseteq D$ by N(a) (the norm of a). Then it is easily verified that N(a)N(b)=N(ab) for any $a,b\in D$, and N(ab) is finite if and only if N(a) and N(b) are finite.

The following lemma can be found in [2].

LEMMA 1.1. Let p be a prime element in p. i. d. D and let e be a positive integer. Suppose that N(p) is finite. Then the order of the general linear group $GL(n, D/(p^e))$ is given by

$$N(p)^{en^2} \Big(1 - \frac{1}{N(p)}\Big) \Big(1 - \frac{1}{N(p)^2}\Big) \cdots \Big(1 - \frac{1}{N(p)^n}\Big).$$

2. Endomorphism ring $\operatorname{End}_{\mathcal{D}}(M)$

We consider the problem of explicitly determining the ring $\operatorname{End}_D(M)$ of endomorphisms of finitely generated module M over p.i.d.D. and we will find the order of $\operatorname{End}_D(M)$ when M is the torsion module.

THEOREM 2.1. Let $M=Dz_1\oplus\cdots\oplus Dz_s$ where the order ideals ann $z_i=(d_i)$ satisfy ann $z_1\supseteq and$ $z_2\supseteq\cdots\supseteq$ ann z_s and ann $z_i\neq 0$ for $i\leq r$ but ann $z_i=0$ if i>r. Then the ring $\operatorname{End}_D(M)$ is isomorphic to R/K where R is the ring of matrices $A\in\operatorname{Mat}_s(D)$ of the form

$$(*) \quad A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1r} & a_{1r+1} & \cdots & a_{1s} \\ a_{21}d_2/d_1 & a_{22} & \cdots & a_{2r} & a_{2r+1} & \cdots & a_{2s} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{r1}d_r/d_1 & a_{r2}d_r/d_2 & \cdots & a_{rr} & a_{rr+1} & \cdots & a_{rs} \\ 0 & 0 & \cdots & \cdots & 0 & a_{r+1r+1} & \cdots & a_{r+1s} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & a_{sr+1} & \cdots & a_{ss} \end{pmatrix}, \quad a_{ij} \in D$$

whose lower left-hand corner consists of 0's, all the indicated a_{ij} are arbitrary, and the (i,j) entry for $j < i \le r$ is $a_{ij}d_i/d_j$, and K is the ideal in R of the matrices of the form

$$(**) \quad B = \begin{pmatrix} b_{11}d_1 & b_{12}d_1 \cdots b_{1r}d_1 \cdots b_{1s}d_1 \\ b_{21}d_1 & b_{22}d_2 \cdots b_{2r}d_2 \cdots b_{2s}d_2 \\ \vdots \\ b_{r1}d_1 & b_{r2}d_2 \cdots b_{rr}d_r \cdots b_{rs}d_r \\ 0 & 0 & \cdots & 0 \\ \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \quad b_{ij} \in D$$

whose (i, j) entry is 0 if i > r, $b_{ij}d_i$ if $i \le r$ and $i \le j \le s$, $b_{ij}d_j$ if $j < i \le r$, and all the indicated b_{ij} are arbitrary.

Proof. Let $\eta \in \text{End}_D(M)$ and suppose $\eta(z_j) = w_j \in M$, $1 \le j \le s$.

Then if $x \in M$, $x = \sum_{j=1}^{s} a_j z_j$, $a_j \in D$ and hence

$$\eta(x) = \eta(\sum a_j z_j) = \sum a_j \eta(z_j) = \sum a_j w_j.$$

This shows that η is determined by its effect on the generators z_i of M. Moreover, $d_j w_j = d_j \eta(z_j) = \eta(d_j z_j) = 0$, which shows that ann $w_j \supseteq$ ann z_j , so if ann $w_j = (g_j)$, then g_j is arbitrary if j > r, and $g_j | d_j$ if $j \le r$. Conversely, suppose that for all j we pick an element $w_j \in M$ such

that ann $w_j \supseteq \text{ann } z_j$. Suppose $x \in M$ and $x = \sum a_j z_j = \sum b_j z_j$ are two representations of x. Then we have $a_j - b_j \in \text{ann } z_j$. So $a_j - b_j \in \text{ann } w_j$ and consequently $\sum a_j w_j = \sum b_j w_j$. This shows that $\eta : \sum a_j z_j \longrightarrow \sum a_j w_j$ is a map of M into M. Direct verification shows that $\eta \in \text{End}_D(M)$.

Our result is the following. We have a bijection $\eta \longrightarrow (w_1, \dots, w_s)$ of the ring $\operatorname{End}_D(M)$ onto the set of s-tuples of elements of M satisfying ann $w_j \supseteq \operatorname{ann} z_j$. We now write $w_j = \sum_{i=1}^s c_{ij} z_i$, $c_{ij} \in D$ and we associate with the s-tuple (w_1, \dots, w_s) the matrix $A = [c_{ij}]$ in the ring $\operatorname{Mat}_s(D)$ of $s \times s$ matrices with entries in D. This matrix may not be uniquely determined since c_{ij} may be replaced by c_{ij} such that $c_{ij} = c_{ij} \pmod{d_i}$ if $i \le r$. This is the only alternation which can be made without changing the w_j . The condition that ann $w_j \supseteq \operatorname{ann} z_j$ is equivalent to

$$c_{ij}d_j\equiv 0 \pmod{d_i}$$
.

This, of course, means that there exists $e_{ij} \in D$ such that $c_{ij}d_j = d_ie_{ij}$. Hence the above condition is equivalent to the following condition on the matrix A: there exists a matrix $E = [e_{ij}] \in Mat_s(D)$ such that

$$A \operatorname{diag} \{d_1, d_2, \dots, d_s\} = \operatorname{diag} \{d_1, d_2, \dots, d_s\} E.$$

The set R of matrices A satisfying the above condition is a subring of $\operatorname{Mat}_s(D)$. Any $A = [c_{ij}] \in R$ determines an $\eta \in \operatorname{End}_D(M)$ such that $\eta(z_j) = \sum c_{ij}z_i$. It is easy to verify that the map $A \longrightarrow \eta$ is an epimorphism of R onto $\operatorname{End}_D(M)$. It is clear that $\eta = 0$ if and only if $c_{ij} \equiv 0 \pmod{d_i}$ for $A = [c_{ij}]$. Hence the kernel K of our homomorphism is the set of matrices A such that

$$A = \operatorname{diag} \{d_1, d_2, \dots, d_s\} Q$$

where $Q \in \text{Mat}_s(D)$, and $\text{End}_D(M) \cong R/K$.

Now a more explicit determination of the ring of matrices R can be made if we make use of the conditions on d_i that $d_i|d_j$ if $i \le j \le r$, and $d_i=0$ if i>r. The conditions $c_{ij}d_j\equiv 0 \pmod{d_i}$ then imply:

 c_{ij} is arbitrary if $i \le j$ since in this case $d_j \equiv 0 \pmod{d_i}$;

 $c_{ij}=0$ if $i \ge r$ and $j \le r$ since in this case $d_i=0$ and $d_j \ne 0$;

 c_{ij} is arbitrary if i, j > r since $d_i = d_j = 0$ in this case;

 $c_{ij} \equiv 0 \pmod{d_i/d_j}$ if $j < i \le r$.

Therefore changing the notation slightly we see that the matrix A of R has the above form (*) in the theorem.

Now let $A = [c_{ij}] \in K \subseteq R$ and A is the matrix of the form(*). Then every entry of i-th row of A is a multiple of d_i , so if i > r every (i, j)

entry is 0 since $d_i=0$, and when $j < i \le r$, $d_i | (a_{ij}d_i/d_j)$ if and only if $d_i | a_{ij}$.

Hence the matrix of K is the form (**) in the theorem.

THEOREM 2.2. Let M be the finitely generated torsion module over the p.i.d. D and let d_1, d_2, \dots, d_r be the invariant factors of M such that $d_1|d_2|\dots|d_r$. If $N(d_r)$ is finite, then the order of $\operatorname{End}_D(M)$ is given by

$$\prod_{j=1}^r N(d_j)^{2r-2j+1}.$$

Proof. Since M is the tosion module r=s in Theorem 2.1, and every $\eta \in \operatorname{End}_{\mathcal{D}}(M)$ is represented by a matrix $A \in R$ of them form

$$A = \begin{pmatrix} a_{11} & a_{12} \cdots a_{1r} \\ a_{21}d_2/d_1 & a_{22} \cdots a_{2r} \\ \vdots & \vdots & \vdots \\ a_{r1}d_r/d_1 & a_{r2}d_r/d_2 \cdots a_{rr} \end{pmatrix}$$

Let T_i be a complete set of residues modulo d_i for each $i(1 \le i \le r)$. Then by Theorem 2.1 any a_{ij} can be replaced by the unique a_{ij}' in T_i , or T_j . Hence we may assume $a_{ij} \in T_i$ if $i \le j$. Similarly, we may assume $a_{ij} \in T_j$ if i > j. Matrices $A \in R$ satisfying these conditions will be called normalized by the sets T_1, T_2, \dots, T_r . It is clear that the map $A \longrightarrow \eta$ restricted to normalized matrices of R is a bijection onto $\operatorname{End}_D(M)$. Therefore the order of $\operatorname{End}_D(M)$ is the same as the number of the normalized matrices. Since $N(d_r) = |T_r|$ is finite and $d_1|d_2|\cdots|d_r$, all $N(d_i) = |T_i|$ are finite. Hence

$$\begin{split} |\operatorname{End}_{D}(M)| &= \prod_{i \leq j} N(d_{i}) \cdot \prod_{i > j} N(d_{j}) \\ &= N(d_{1})^{r} N(d_{2})^{r-1} \cdots N(d_{r-1})^{2} N(d_{r}) \times \\ & N(d_{1})^{r-1} N(d_{2})^{r-2} \cdots N(d_{r-1}) \\ &= N(d_{1})^{2r-1} N(d_{2})^{2r-3} \cdots N(d_{r-1})^{3} N(d_{r}) \\ &= \prod_{i=1}^{r} N(d_{j})^{2r-2j+1}. \end{split}$$

3. Unit group $U(\operatorname{End}_D(M))$

Let M be a finitely generated torsion module over a p.i.d.D, and for each prime element $p \in D$, let $M(p) = \{z \in M \mid \text{ann } z = (p^n) \text{ for some } n \ge 1\}$. Then there exist finite number of nonassociate prime elements p_1, \dots, p_r in D such that

Orders of $\operatorname{End}_D(M)$ and $U(\operatorname{End}_D(M))$ for f.g. Torsion module M over p.i.d.D 113

$$M=M(p_1)\oplus\cdots\oplus M(p_r)$$
.

In this case, it is easy to verify that

$$\operatorname{End}_{D}(M) \cong \operatorname{End}_{D}(M(p_{1})) \oplus \cdots \oplus \operatorname{End}_{D}(M(p_{r})),$$

$$U(\operatorname{End}_{D}(M)) \cong U(\operatorname{End}_{D}(M(p_{1}))) \times \cdots \times U(\operatorname{End}_{D}(M(p_{r})))$$

Now assume that every element of the module M has order ideal which is a power of the fixed prime element p in D. Then M is a direct sum of cyclic D-modules of order ideals $(p^{n_1}), \dots, (p^{n_r})$ respectively, where $1 \le n_1 \le n_2 \le \dots \le n_r$, that is,

$$M=Dz_1 \oplus \cdots \oplus Dz_r$$
,
ann $z_i=(p^{n_i}), 1 \le i \le r$.

Then by Theorem 2.1 $\operatorname{End}_D(M)$ is isomorphic onto the ring R/K where R is the ring of matrices of the form

$$(*) A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1r} \\ p^{n_2-n_1}a_{21} & a_{22} & \cdots & a_{2r} \\ \vdots & \vdots & \vdots & \vdots \\ p^{n_r-n_1}a_{r1} & p^{n_r-n_2}a_{r2} & a_{rr} \end{pmatrix}, a_{ij} \in D$$

and K is the ideal of R of matrices of the form

$$(**) B = \begin{pmatrix} p^{n_1}b_{11} & p^{n_1}b_{12} \cdots p^{n_1}b_{1r} \\ p^{n_1}b_{21} & p^{n_2}b_{22} \cdots p^{n_2}b_{2r} \\ \vdots & \vdots & \vdots \\ p^{n_1}b_{r_1} & p^{n_2}b_{r_2} \cdots p^{n_r}b_{r_r} \end{pmatrix}, b_{ij} \in D.$$

LEMMA 3.1. Let p be a prime element of p. i. d. D, n_1, n_2, \dots, n_r be positive integers such that $n_1 \leq n_2 \leq \dots \leq n_r$. Let R be the ring of matrices of the above form (*) and let K be the ideal of R of matrices of the above form (**). Then for an element $\overline{A} = A + K \in R/K$, $\overline{A} \in U(R/K)$ if and only if (Det(A), p) = 1.

Proof. If $\overline{A} \in U(R/K)$ there exists $\overline{B} \in U(R/K)$ such that $\overline{AB} = \overline{AB} = \overline{BA} = \overline{I}$, i. e.,

$$AB = I + \begin{pmatrix} p^{n_1}b_{11} & p^{n_1}b_{12} \cdots p^{n_1}b_{1r} \\ p^{n_1}b_{21} & p^{n_2}b_{22} \cdots p^{n_2}b_{2r} \\ \vdots & \vdots & \vdots \\ p^{n_1}b_{r1} & p^{n_2}b_{r2} \cdots p^{n_r}b_{rr} \end{pmatrix}$$

Therefore (Det(A))(Det(B)) = Det(AB) = 1 + pc for some $c \in D$ hence (Det(A), p) = 1. Conversely suppose (Det(A), p) = 1 for $\overline{A} \in R/K$. We

can easily verify that the adjoint matrix Adj(A) of A is also an element of R. Then

$$Adj(A) A = AAdj(A) = Det(A)I$$

and there exist $u, v \in D$ such that $Det(A)u - p^n r v = 1$, since $(Det(A), p^n r) = 1$. Then,

$$u\mathrm{Adj}(A) A = A(u \mathrm{Adj}(A)) = u\mathrm{Det}(A) I$$

= $(1 + p^n r v) I = I + p^n r v I, p^n r v I \in K.$

Therefore \overline{A} $\overline{u\mathrm{Adj}(A)} = \overline{u\mathrm{Adj}(A)}\overline{A} = \overline{I}$, so $\overline{A} \in U(R/K)$.

THEOREM 3.2. Let M be a finitely generated torsion module over p. i. d. D which has the elementary divisors $p^{n_1}, p^{n_2}, \dots, p^{n_r}, 1 \le n_1 \le \dots \le n_r$, for some fixed prime element p in D. Assume that

$$1 \le n_1 = \dots = n_{k(1)} < n_{k(1)+1} = \dots = n_{k(1)+k(2)} < \dots < n_{k(1)+\dots+k(s-1)+1} = \dots = n_{k(1)+\dots+k(s)} = n_r.$$

Then if N(p) is finite, the order of $U(End_D(M))$ is given by

$$N(p)^{\alpha}\prod_{i=1}^{s}Q_{k(i)}(p)$$

where

$$\alpha = \sum_{i=1}^{s} \sum_{j=1}^{s} n_{k(1)+\dots+k(\min(i,j))} k(i) k(j),$$

$$Q_{k(i)}(p) = \left(1 - \frac{1}{N(p)}\right) \left(1 - \frac{1}{N(p)^{2}}\right) \cdots \left(1 - \frac{1}{N(p)^{k(i)}}\right)$$

Proof. We denote $n_{k(1)} = l_1, n_{k(1)+k(2)} = l_2, \dots, n_{k(1)+\dots+k(s)} = l_s$. Then by the above remark any $\eta \in \operatorname{End}_D(M)$ is represented by the matrix of the form

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} \cdots A_{1s} \\ p^{l_2-l_1}A_{21} & A_{22} & A_{23} \cdots A_{2s} \\ p^{l_3-l_1}A_{31} & p^{l_3-l_2}A_{32} & A_{33} \cdots A_{3s} \\ & & & & & & \\ p^{l_s-l_1}A_{s1} & p^{l_s-l_2}A_{s2} & p^{l_s-l_3}A_{s3} \cdots A_{ss} \end{pmatrix}$$

where A_{ij} is a $k(i) \times k(j)$ matrix whose entries are in a prescribed complete set of residues modulo p^{l_i} if $i \le j$ and modulo p^{l_i} if i > j, respectively. Thus A_{ij} is regarded as a matrix in $\operatorname{Mat}_{k(i) \times k(j)}(D/(p^{l_i}))$ if $i \le j$ and it is regarded as a matrix in $\operatorname{Mat}_{k(j) \times k(j)}(D/p^{l_j})$ if i > j.

Now
$$U(\operatorname{End}_{\mathcal{D}}(M)) \cong U(R/K)$$
, so $|U(\operatorname{End}_{\mathcal{D}}(M))| = |U(R/K)|$.

Orders of $\operatorname{End}_D(M)$ and $U(\operatorname{End}_D(M))$ for f.g. Torsion module M over p.i.d.D 115

We may write $A = A_0 + P$ where

$$A_0 = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{12} \\ 0 & A_{22} & \cdots & A_{2s} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & A_{ss} \end{pmatrix}, P = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ p^{l_2 - l_1} A_{21} & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ p^{l_s - l_1} A_{s1} & p^{l_s - l_2} A_{s2} & \cdots & 0 \end{pmatrix}$$

Then utilizing Lemma 3.1 for $\overline{A} \in R/K$, we have

$$\overline{A} \in U(R/K) \iff (\operatorname{Det}(A), p) = 1 \iff (\operatorname{Det}(A_0), p) = 1$$

 $\iff (\operatorname{Det}(A_{ii}), p) = 1 \text{ for all } i,$

since p is a prime element in D, $1 \le l_1 < l_2 < \dots < l_s$ and $Det(A_0) =$

 $\prod_{i=1}^{s} \operatorname{Det}(A_{ii}). \text{ Thus if } \overline{A} \in U(R/K), \text{ every } k(i) \times k(i) \text{ matrix } A_{ii} \text{ is regarded as a matrix in the general linear gorup } \operatorname{GL}(k(i), D/p^{l_i})).$

Now suppose that N(p) is finite. Then, since the order of group $\mathrm{GL}(k(i),\ D/(p^{l_i}))$ is given by $N(p)^{l_ik(i)^2}\ Q_{k(i)}(p)$ where $Q_{k(i)}(p) = \left(1 - \frac{1}{N(p)}\right)\left(1 - \frac{1}{N(p)^2}\right)\cdots\left(1 - \frac{1}{N(p)^{k(i)}}\right)$ by Lemma 1.1, and the number of choices for A_{ij} is $N(p)^{l_ik(i)k(j)}$ when i < j and $N(p)^{l_jk(i)k(j)}$ when i > j respectively, it follows that the order of U(R/K) is given by

$$\prod_{i < j} N(p)^{l_i k(i) k(j)} \prod_{i > j} N(p)^{l_j k(i) k(j)} \prod_{i = 1}^{s} N(p)^{l_i k(i)^2} Q_{k(i)}(p) = N(p)^a \prod_{i = 1}^{s} Q_{k(i)}(p)$$
where

$$\alpha = \sum_{i < j} l_i k(i) k(j) + \sum_{i > j} l_j k(i) k(j) + \sum_{i = 1}^{s} l_i k(i)^2$$

$$= \sum_{i = 1}^{s} \sum_{j = 1}^{s} l_{\min(i, j)} k(i) k(j) = \sum_{i = 1}^{s} \sum_{j = 1}^{s} n_{k(1) + \dots + k(\min(i, j))} k(i) k(j).$$

THEOREM 3.3. Let M be a finitely generated torsion module over a p. i.d. D which has elementary divisors

$$p_{\lambda}^{n_{\lambda,1}}, p_{\lambda}^{n_{\lambda,2}}, \cdots, p_{\lambda}^{n_{\lambda,r_{\lambda}}}, 1 \leq \lambda \leq t,$$

where p_1, p_2, \dots, p_t are nonassociate prime elements in D such that $N(p_1)$, $N(p_2), \dots, N(p_t)$ are all finite and $1 \le n_{\lambda, 1} \le \dots \le n_{\lambda, r_{\lambda}}$ for all λ .

Assume that

$$1 \leq n_{\lambda,1} = \cdots = n_{\lambda,k(\lambda,1)} < n_{\lambda,k(\lambda,1)+1} = \cdots = n_{\lambda,k(\lambda,1)+k(\lambda,2)} < \cdots < n_{\lambda,k(\lambda,1)+\cdots+k(\lambda,s_{\lambda}-1)+1} = \cdots = n_{\lambda,k(\lambda,1)+\cdots+k(\lambda,s_{\lambda})} = n_{\lambda,r_{\lambda}}.$$

Then the order of $U(\operatorname{End}_D(M))$ is given by

$$\prod_{\lambda=1}^t N(p_\lambda)^{\alpha_\lambda} (\prod_{j=1}^{s_\lambda} Q_{\lambda,k(\lambda,j)}(p_\lambda))$$

where

The
$$\alpha_{\lambda} = \sum_{i=1}^{s_{\lambda}} \sum_{j=1}^{s_{\lambda}} n_{\lambda, k(\lambda, 1) + \cdots k(\lambda, \min(i, j))} k(\lambda, i) k(\lambda, j),$$

$$Q_{\lambda, k(\lambda, j)}(p_{\lambda}) = \left(1 - \frac{1}{N(p_{\lambda})}\right) \left(1 - \frac{1}{N(p_{\lambda})^{2}}\right) \cdots \left(1 - \frac{1}{N(p_{\lambda})^{k(\lambda, j)}}\right).$$

Proof. Let $M(p_{\lambda}) = \{z \in M \mid \text{ann } z = (p_{\lambda}^{m}) \text{ for some integer } m \ge 1\}$. Then $M = M(p_{1}) \oplus M(p_{2}) \oplus \cdots \oplus M(p_{t})$,

$$\operatorname{End}_D(M) \cong \operatorname{End}_D(M(p_1)) \oplus \cdots \oplus \operatorname{End}_D(M(P_t)),$$

 $U(\operatorname{End}_D(M)) \cong U(\operatorname{End}_D(M(p_1))) \times \cdots \times U(\operatorname{End}_D(M(p_t))),$

and $p_{\lambda^{n_{\lambda},1}}, \dots, p_{\lambda^{n_{\lambda},r_{\lambda}}}$ are elementary divisors of $M(p_{\lambda})$ for each λ . Therefore by Theorem 3.2, we have the desired order of the unit group $U(\operatorname{End}_{D}(M))$.

References

- L. Dornhoff, Group representation theory, Marcel Dekker, Inc., New York, 1972.
- 2. M. Newmann, Integral matrices, Academic Press, 1972.
- 3. _____, The structure of some subgroups of the modular group, Illinois J. Math. 6, 480-487(1962).

Seoul National University Seoul 151, Korea