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A REPRESENTATION OF E (X, xO, G) IN TERMS OF G (X, Xo)

Moo HA Woo

F. Rhodes [2J introduced the fundamental group (J (X, xo, G) of a
transformation group (X, G) as a generalization of the fundamental group
of a topological space X and showed that (J (X, xo, G) is isomorphic to
71:1 (X, xo) XG if (G, G) admits a family of preferred paths at e. D. H.
Gottlieb [IJ introduced the evaluation subgroup G (X, xo) of the fund
amental group of a topological space X. The author [4J introduced the
evaluation subgroup E (X, xo, G) of the fundamental group of a trans
formation group as a generalization of the evaluation subgroup G (X, xo).

In this paper, we give necessary and sufficient conditions for E(X,
xo,G) ((J(X,xo,G» to be isomorphic to G(X,xo)XG (7I:1(X,XO)XG).

Let (X, G, 71:) be a transformation group, where X is a path connected
space with Xo as base point. Given any element g of G, a path f of
order g with base point Xo is a continuous map f : 1~ X such that
f(O) =Xo and f(l) =gxo. A path f1 of order gl and a path f2 of order
g2 give rise to a path f1 +glf2 of order glg2 defined by the equations

Two paths f and f' of the same order g are said to be homotopic if
there is a continuous map F : 12 - X such that

F(s, 0) =f(s) O:(;s:(;l,
F(s, 1) =f' (s) O:(;s:(;l,
F(O, t) =Xo O:(;t:(;l,
F(l, t) =gxo O:(;t:(;l.

The homotopy class of a path f of order g was denoted by [f; gJ.
Two homotopy classes of paths of different orders gl and g2 are distinct,
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even if glXO=g2XO' F. Rhodes showed that the set of homotopy classes
of paths of prescribed order with the rule of composition * is a group,
where * is defined by [fl ; glJ*[f2; g2J=[fl+gd2 ; glg2]. This group
was denoted by (l(X, Xo, G), and was called the fundamental group of
(X, G) with base point Xo.

In [lJ, a homotopy H: XX{ ---7 X is called a cyclic homotopy if
H(x, 0) =H(x, 1) =x. This concept of a topological space is generalized
to that of a transformation group. A continuous map H: XXI ---7 X
is called a homotopy of order g if H(x, 0) =x, H(x, 1) =gx, where
g is an element of G. If H is a homotopy of order g, then the path
f: ! ---7 X such that f(t) =H(xo, t) will be called the trace of H
The trace is a path of order g. In particular, if the acting group G
is trivial, then a homotopy of order g is a cyclic homotopy.

In [4J, the subgroup E(X, xo, G) was defined by the set of all
elements [f; gJ E(l(X, xo, G) such that f is the trace of a homotopy of
order g, where gEG. The evaluation subgroup G(X, xo) can be iden
tified by E(X, Xo, {e}).

In [2J, a transformation group (X, G) is said to admit a family K
of preferred paths at Xo if it is possible to associate with every element
g of G a path kg from gxo to Xo such that the path ke associated with
the identity element e of G is xo' which is the constant map such that
xo'(t) =xo for each tE! and for every pair of elements g, h, the path
kgh from ghxo to Xo is homotopic to gkh+kg.

DEFINITION 1. A family K of preferred paths at Xo is called a
family of preferred traces at Xo if for every preferred path kg in K, kgp
is the trace of a homotopy of order g, where pet) =l-t.

EXAMPLE 1. Let R be the additive group of real numbers. Then the
transformation group (R, R) admits a family of preferred traces at 0,
where the action for the transformation group is the map 11:: RXR---7
R defined by 11:(s, t) =s+t.

THEOREM 1. Let (X, G, 1C) be a transformation group. If (G, G)
admits a family of preferred paths at e, than (X, G) admits. a family
of preferred traces at Xo'

Proof. Let H be a family of preferred paths at e in (G, G). Define
K:::IC' {kg: kg(t) =hg(t) (xo) , hgEH}. Then it is easy to show that K is
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a family of preferred paths at Xo.

Define F: XXI - X by
F(x, t) =Je (x, hgp (t».

Then F is a homotopy of order g with trace kgp. Thus K is a family
of preferred traces at Xo.

The converse of Theorem 1 does not hold;

EXAMPLE 2. Let R be the real space, Z be the additive integer group
and Je: RXZ - R be a map defined by Je(r, n) =r+n. Then (R, Z, Je)
is a transformation group and it admits a family of preferred traces at
O. Let

K= {knlkn is a path from n to 0 in R}.

It is easy to show that K is a family of preferred paths at O. For each
nEZ, define H: RXI - R by

H(r, t) =r+knP(t).

Then H is a homotopy of order n with trace knP. Thus K is a family
of preferred traces at O. Since Z is discrete, there is no path from n

to 0, where n is any nonzero integer. Thus (Z, Z) cannot admit a
family of preferred paths at O.

By Theorem 1 and Example 1, every transformation group (X, R)
admits a family of preferred traces at xo.

LEMMA 2. Let (X, G) be a transformation group. If k is a trace
of a homotopy of order g, then every loop f at Xo is homotopic to k+
gf+kp.

Proof. Let H: XXI - X be a homotopy of order g with trace k
and f be a loop at Xo.

Define F : IXI - X by

J
k(4s) 0~s~tI4

F(s,t)= H(f(~_-;~), t) ~ ~s~ 4~t

l kp(4s-3) (4-t) 14~s~1.
Then F is well defined, F(s,O)-f(s) and F(s, 1) = (k+gf+kp) (s).

DEFINITION 2. A family K of preferred paths at Xo is called a family
of preferred strong paths at Xo if for each loop f at Xo and each kg in
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K, f is homotopic to kgp+gf+kg.

REMARK. By Lemma 2, every family of preferred traces is a family
of preferred strong paths.

THEOREM 3. A transformation group~ (X, G) admits a family of
preferred traces at Xo if and only if E(X, xo, G) is a split extention of
G(X, xo) by G.

Proof. Suppose (X, G) admits a family K= {kg: g E G} of preferred
traces at Xo. Consider the sequence

iG jG
O-G(X,xo) -E(X,xo,G) -G~O

where iG[fJ=[f: eJ and jG[f : g]=g. Since iG is a monomorphism
and jG is an epimorphism, the sequence is a short exact sequence.
Define <jJ : G -E(X, xo, G) by <jJ(g) = [kgp : g]. Then <jJ is a homo
morphism, for

<jJ(glg2) = [kK1 K2P ; glg2]=[(glkK2+kK1)P ; glg2]
=[kg1P+glh2P ; glg2]=[h1P ; glJ*[kg2P ; g2]
= ep (gl) *ep (g2) .

By definition, we have iGep=lG• Thus E(X, xo, G) is a split extension
of G (X, xo) by G.

Conversely, suppose E(X, xo, G) is a split extension of G(X, xo) by
G. Then there is a monomorphism 1ff: G - E (X, xo, G) such that
j G1ff=lG. Let H= f/glfgp is a representative path of 1ff(g)}. Then H
is a family of preferred traces at Xo. Since 1ff(e) = [xo' : e], 1ff(glg2) =
1ff(gl)*1ff(g2),fglg2 is homotophic to (gdg2+fg1) and fe=xo'.

In [4J the author showed that if a transformation group (X, G) admits
a family of preferred traces at xo, then E(X, xo, G) is isomorphic to
G(X, xo) XG, but the proof was not complete.

THEOREM 4. A transformation group (X, G) admits a family of
preferred traces at Xo if and only if there is an isomorphism if>: E (X,

xo, G) - G(X, xo) XG such that the diagram commutes
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Proof. Let K = {kg: g E G} be a family of preferred traces at XQ.

Define rjJ: E(X, XQ, G)~ G(X, xQ) XG by

rjJ([f; gJ) = ([f+kgJ, g)

Since [f; gJ EE(X, XQ, G), there exists a homotopy H: XXI~ X
of order g with trace f. kgp is a trace of a homotopy J: X X I~ X
of order g. Define F: XXI~ X by

F(x t)={ H(x,2t), O:(t:(1/2
, J(x,2(1-t», 1/2:(t:(1.

Then F is a cyclic homotopy with trace f +kg • Thus [f+kgJ belongs
to G(X, xQ). Let [f; gJ = [f' ; gJ. Since f is homotopic to f', f +kg
is also homotopic to f' +kg. Thus rjJ is well defined.

Suppose rjJ([f; gJ) =rjJ([f' ; gJ). Then f +kg is homotopic to f' +kg.
This implies that f ( = f +kg+kgP) is homotopic to f' ( = f' +kg+kgp) .
Therefore rjJ is injective. For any element ([fJ, g) EG(X, xQ) XG, there
exists an element [f+kgp ; gJ in E (X, XQ, G) such that

rjJ([f+kgp ; gJ) = ([f+kgp+kgJ, g) = ([fJ, g).

Thus rjJ is a bijection.
Next we must show that rjJ is a homomorphism. Let [11 ; glJ and

[f2; g2J be elements of E(X, XQ, G). Then

rjJ([fl ; glJ*[12 ; g2J) = rjJ ([11 +gI!2 ; glg2J)
= ([f1 +gI!2+h jgzJ ; glg2)

while

9([f1 ; glJ) 0 rjJ[f2 ; g2J) = ([f1 +hJ, gl) 0 ([f2+h2J, g2)
= ([f1+ h j+f2+ kgzJ, glg2)'

Since f2+h2 is a loop at .'fQ and hjp is a trace of a homotopy of order
glJ2+kg2 is homotopic to kgjP+gl(f2+h2) +kg j by Lemma 2. There
fore we obtain

f1 +kg j+f2+h 2 '"" f1 +kgj+kKjP+g1 (f+h2 ) +kg j
~ f1+g1(f2+h2) +kgj
~ f1 +glf2+kg jg2'

Conversely, given a commutative diagram with exact rows and rjJ an
isomorphism:



106 Moo Ha Woo

define cjJ : G - E(X. n'o, G) to be if>-li2. Use the commutativity of the
diagram to show jGcjJ=lG. Then E(X. xo, G) is a split extension of
G(X. xo) by G. If we apply Theorem 3, (X. G) admits a family of
preferred traces at xo.

COROLLARY 5. A transformation group (X. G) admits a family of
preferred traces at Xo and G abelian if and only if O-G(X, xo)
E(X, xo, G)-G-O is a split exact sequence of Z-modules.

Proof. It is clear by Theorem 4 and G(X, xo) abelian.

REMARK. Every transformation group (X, R) has the abelian evaluation
subgroup E(X. Xo. R).

In [2J, F. Rhodes showed that if (G, G) admits a family of preferred
paths at e. then (J (X, xo, G) is isomorphic to n'l (X, xo) XG. In general,
the converse is not true.

THEOREM 6. A transformation group (X, G) admits a family of pre
ferred strong paths at Xo if and only if there exists an isomorphism if> :
n'l (X, xo) XG - (J(X, xo, G) such that the diagram commutes

iG (X G) jG
/ (J .Xo, ~

0-1t'1 (X, xo) '-...". i if> ~G-o
- _ _ • n'l (X, xo) XG .

tl -t2

Proof. Only if: It is proved by the same method of Theorem 4.
If: Define cjJ : G -(J(X, xo, G) by cjJ=if>oi2. If we use the commu

tatity of the diagram and n'2oi2=lG and if> an isomorphism, then we
have joocjJ=lG. For each gEG. let cjJ(g) = [kgp ; gJ. Then K= {kg: kgp
is the representative path of cjJ (g) } is a family of preferred paths at xo.
We have to show that K is a family of preferred strong paths at Xo.
Let f is any loop at Xo and kg be any element of K. Since

([fJ. e) = ([xo'J. g) 0 ([fJ, g-l)

in 1t'1 (X. xo) XG, we have
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[f; eJ =iG([fJ) =if>i l ([fJ) =if>([fJ, e)
=if>(([xo'J, g) 0 ([fJ, g-l»

=if>([xo'J, g) *if>([fJ, g-l)

=[xo'+kgp; gJ*[f+kg-IP; g-IJ

= [xo'+kgp; gJ*[f+g-Ikg; g-lJ

= [xo' +kgp+gf+kg; eJ
= [kgp+gf+ kg; eJ

Thus f is homotopic to kgp +g f +kg. Therefore K is a family of preferred
strong paths at .TO.

The existence of a family of preferred traces (preferred strong paths)
on a transformation group does not depend to base point.

THEOREM 7. Let (X, G) be a transformation group. If A is a path
from Xo to Xl> then a family of preferred strong paths at Xo gives rise
to a family of preferred strong paths at Xl and a family of preferred
traces at Xo induces a family of preferred traces at Xl.

Proof. Let K= {kg: gEG} be a family of preferred strong paths at
Xo. For each g in G, let hg=gA.p+kg+A.. It is easy to show that H=
{hg : g E G} is a family of preferred paths at Xl. Let f be any loop at

Xl and hg be any element of H. Then we have

hgp+gf+hg= (gAp+kg+A) p+gf+ (gA.p+kg+A.)
=A.p+kgp+g(A.+f+Ap) +kg+A..

Since A+f +A.p is a loop at Xo, A. +f +AP is homotopic to kgp +g (A+f
+Ap) +kg. Thus we obtain that f is homotopic to hgp+gf+hg.

Let K = {kg : g E G} be a family of preferred traces at Xo and hg= g A.p
+kg+A. Since the induced isomorphism A.* carries E(X, xo, G) isomor
phically On E (X, Xl' G),

A.*[kgp; gJ=[Ap+kgp+gA.; gJ=[hgp; gJ

belongs to E (X, Xl> G). Thus H= {hg : g E G} is a family of preferred
traces at Xl.

The represetation is natural with respect to change of base point In

the sense that the following two diagrams are commutative.
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.1*
E(X, XO, G)--;---7E(X,Xh G)

1q)K 1q)H
G(X, Xo) XG---'»G(X, Xl) XG
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