A REPRESENTATION OF $E(X, x_0, G)$ IN TERMS OF $G(X, x_0)$

Moo HA Woo

F. Rhodes [2] introduced the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G) as a generalization of the fundamental group of a topological space X and showed that $\sigma(X, x_0, G)$ is isomorphic to $\pi_1(X, x_0) \times G$ if (G, G) admits a family of preferred paths at e. D. H. Gottlieb [1] introduced the evaluation subgroup $G(X, x_0)$ of the fundamental group of a topological space X. The author [4] introduced the evaluation subgroup $E(X, x_0, G)$ of the fundamental group of a transformation group as a generalization of the evaluation subgroup $G(X, x_0)$.

In this paper, we give necessary and sufficient conditions for $E(X, x_0, G)$ ($\sigma(X, x_0, G)$) to be isomorphic to $G(X, x_0) \times G$ ($\pi_1(X, x_0) \times G$).

Let (X, G, π) be a transformation group, where X is a path connected space with x_0 as base point. Given any element g of G, a path f of order g with base point x_0 is a continuous map $f: I \longrightarrow X$ such that $f(0) = x_0$ and $f(1) = gx_0$. A path f_1 of order g_1 and a path f_2 of order g_2 give rise to a path $f_1+g_1f_2$ of order g_1g_2 defined by the equations

$$(f_1 + g_1 f_2)(s) = \begin{cases} f_1(2s) &, \ 0 \le s \le \frac{1}{2} \\ g_1 f_2(2s - 1), \ \frac{1}{2} \le s \le 1. \end{cases}$$

Two paths f and f' of the same order g are said to be *homotopic* if there is a continuous map $F: I^2 \longrightarrow X$ such that

$$F(s, 0) = f(s)$$
 $0 \le s \le 1$,

 $F(s, 1) = f'(s)$
 $0 \le s \le 1$,

 $F(0, t) = x_0$
 $0 \le t \le 1$,

 $F(1, t) = gx_0$
 $0 \le t \le 1$.

The homotopy class of a path f of order g was denoted by [f; g]. Two homotopy classes of paths of different orders g_1 and g_2 are distinct,

Received October 18, 1985.

This research is supported by The Korea Science and Engneering Foundation research grant.

even if $g_1x_0=g_2x_0$. F. Rhodes showed that the set of homotopy classes of paths of prescribed order with the rule of composition * is a group, where * is defined by $[f_1; g_1]*[f_2; g_2]=[f_1+g_1f_2; g_1g_2]$. This group was denoted by $\sigma(X, x_0, G)$, and was called the *fundamental group* of (X, G) with base point x_0 .

In [1], a homotopy $H: X \times I \longrightarrow X$ is called a cyclic homotopy if H(x, 0) = H(x, 1) = x. This concept of a topological space is generalized to that of a transformation group. A continuous map $H: X \times I \longrightarrow X$ is called a homotopy of order g if H(x, 0) = x, H(x, 1) = gx, where g is an element of G. If H is a homotopy of order g, then the path $f: I \longrightarrow X$ such that $f(t) = H(x_0, t)$ will be called the trace of H. The trace is a path of order g. In particular, if the acting group G is trivial, then a homotopy of order g is a cyclic homotopy.

In [4], the subgroup $E(X, x_0, G)$ was defined by the set of all elements $[f; g] \in \sigma(X, x_0, G)$ such that f is the trace of a homotopy of order g, where $g \in G$. The evaluation subgroup $G(X, x_0)$ can be identified by $E(X, x_0, \{e\})$.

In [2], a transformation group (X, G) is said to admit a family K of preferred paths at x_0 if it is possible to associate with every element g of G a path k_g from gx_0 to x_0 such that the path k_e associated with the identity element e of G is x_0' which is the constant map such that $x_0'(t) = x_0$ for each $t \in I$ and for every pair of elements g, h, the path k_{gh} from ghx_0 to x_0 is homotopic to $gk_h + k_g$.

DEFINITION 1. A family K of preferred paths at x_0 is called a *family of preferred traces at* x_0 if for every preferred path k_g in K, $k_g\rho$ is the trace of a homotopy of order g, where $\rho(t)=1-t$.

EXAMPLE 1. Let R be the additive group of real numbers. Then the transformation group (R, R) admits a family of preferred traces at 0, where the action for the transformation group is the map $\pi: R \times R \longrightarrow R$ defined by $\pi(s, t) = s + t$.

THEOREM 1. Let (X, G, π) be a transformation group. If (G, G) admits a family of preferred paths at e, than (X, G) admits a family of preferred traces at x_0 .

Proof. Let H be a family of preferred paths at e in (G, G). Define $K = \{k_g : k_g(t) = h_g(t)(x_0), h_g \in H\}$. Then it is easy to show that K is

a family of preferred paths at x_0 .

Define
$$F: X \times I \longrightarrow X$$
 by
 $F(x,t) = \pi(x, h_g \rho(t)).$

Then F is a homotopy of order g with trace $k_g\rho$. Thus K is a family of preferred traces at x_0 .

The converse of Theorem 1 does not hold;

EXAMPLE 2. Let R be the real space, Z be the additive integer group and $\pi: R \times Z \longrightarrow R$ be a map defined by $\pi(r, n) = r + n$. Then (R, Z, π) is a transformation group and it admits a family of preferred traces at 0. Let

 $K = \{k_n | k_n \text{ is a path from } n \text{ to } 0 \text{ in } R\}.$

It is easy to show that K is a family of preferred paths at 0. For each $n \in \mathbb{Z}$, define $H: R \times I \longrightarrow R$ by

$$H(r,t) = r + k_n \rho(t).$$

Then H is a homotopy of order n with trace $k_n\rho$. Thus K is a family of preferred traces at 0. Since Z is discrete, there is no path from n to 0, where n is any nonzero integer. Thus (Z, Z) cannot admit a family of preferred paths at 0.

By Theorem 1 and Example 1, every transformation group (X, R) admits a family of preferred traces at x_0 .

LEMMA 2. Let (X,G) be a transformation group. If k is a trace of a homotopy of order g, then every loop f at x_0 is homotopic to $k+gf+k\rho$.

Proof. Let $H: X \times I \longrightarrow X$ be a homotopy of order g with trace k and f be a loop at x_0 .

Define $F: I \times I \longrightarrow X$ by

$$F(s,t) = \begin{cases} k(4s) & 0 \le s \le t/4 \\ H(f(\frac{4s-t}{4-2t}), t) & \frac{t}{4} \le s \le \frac{4-t}{4} \\ k\rho(4s-3) & (4-t)/4 \le s \le 1 \end{cases}$$

Then F is well defined, F(s, 0) = f(s) and $F(s, 1) = (k+gf+k\rho)(s)$.

DEFINITION 2. A family K of preferred paths at x_0 is called a family of preferred strong paths at x_0 if for each loop f at x_0 and each k_g in

K, f is homotopic to $k_g \rho + g f + k_g$.

REMARK. By Lemma 2, every family of preferred traces is a family of preferred strong paths.

THEOREM 3. A transformation group (X,G) admits a family of preferred traces at x_0 if and only if $E(X, x_0, G)$ is a split extension of $G(X, x_0)$ by G.

Proof. Suppose (X, G) admits a family $K = \{k_g : g \in G\}$ of preferred traces at x_0 . Consider the sequence

$$0 \longrightarrow G(X, x_0) \xrightarrow{i_G} E(X, x_0, G) \xrightarrow{j_G} G \longrightarrow 0$$

where $i_G[f] = [f:e]$ and $j_G[f:g] = g$. Since i_G is a monomorphism and j_G is an epimorphism, the sequence is a short exact sequence. Define $\psi: G \longrightarrow E(X, x_0, G)$ by $\psi(g) = [k_g \rho: g]$. Then ψ is a homomorphism, for

$$\begin{aligned} \psi(g_1g_2) =& [k_{s_1}s_2\rho \ ; \ g_1g_2] = [(g_1k_{s_2}+k_{s_1})\rho \ ; \ g_1g_2] \\ =& [k_{s_1}\rho + g_1k_{s_2}\rho \ ; \ g_1g_2] = [k_{s_1}\rho \ ; \ g_1] * [k_{s_2}\rho \ ; \ g_2] \\ =& \phi(g_1) * \phi(g_2). \end{aligned}$$

By definition, we have $j_G \psi = 1_G$. Thus $E(X, x_0, G)$ is a split extension of $G(X, x_0)$ by G.

Conversely, suppose $E(X, x_0, G)$ is a split extension of $G(X, x_0)$ by G. Then there is a monomorphism $\Psi: G \longrightarrow E(X, x_0, G)$ such that $j_G \Psi = 1_G$. Let $H = \{f_g | f_g \rho$ is a representative path of $\Psi(g)\}$. Then H is a family of preferred traces at x_0 . Since $\Psi(e) = [x_0':e]$, $\Psi(g_1g_2) = \Psi(g_1) * \Psi(g_2), f_{s_1s_2}$ is homotophic to $(g_1f_{s_2} + f_{s_1})$ and $f_e = x_0'$.

In [4] the author showed that if a transformation group (X, G) admits a family of preferred traces at x_0 , then $E(X, x_0, G)$ is isomorphic to $G(X, x_0) \times G$, but the proof was not complete.

THEOREM 4. A transformation group (X, G) admits a family of preferred traces at x_0 if and only if there is an isomorphism $\phi : E(X, x_0, G) \longrightarrow G(X, x_0) \times G$ such that the diagram commutes

$$0 \longrightarrow G(X, x_0) \xrightarrow{E(X, x_0, G)} G \longrightarrow G$$

Proof. Let $K = \{k_g : g \in G\}$ be a family of preferred traces at x_0 . Define $\phi : E(X, x_0, G) \longrightarrow G(X, x_0) \times G$ by

$$\phi([f;g]) = ([f+k_g],g)$$

Since $[f; g] \in E(X, x_0, G)$, there exists a homotopy $H: X \times I \longrightarrow X$ of order g with trace f. $k_g \rho$ is a trace of a homotopy $J: X \times I \longrightarrow X$ of order g. Define $F: X \times I \longrightarrow X$ by

$$F(x,t) = \begin{cases} H(x,2t), & 0 \le t \le 1/2 \\ J(x,2(1-t)), & 1/2 \le t \le 1. \end{cases}$$

Then F is a cyclic homotopy with trace $f+k_g$. Thus $[f+k_g]$ belongs to $G(X, x_0)$. Let [f;g]=[f';g]. Since f is homotopic to f', $f+k_g$ is also homotopic to $f'+k_g$. Thus ϕ is well defined.

Suppose $\phi([f;g]) = \phi([f';g])$. Then $f+k_g$ is homotopic to $f'+k_g$. This implies that $f(=f+k_g+k_g\rho)$ is homotopic to $f'(=f'+k_g+k_g\rho)$. Therefore ϕ is injective. For any element $([f],g) \in G(X,x_0) \times G$, there exists an element $[f+k_g\rho;g]$ in $E(X,x_0,G)$ such that

$$\phi([f+k_{g}\rho;g]) = ([f+k_{g}\rho+k_{g}],g) = ([f],g).$$

Thus ϕ is a bijection.

Next we must show that ϕ is a homomorphism. Let $[f_1; g_1]$ and $[f_2; g_2]$ be elements of $E(X, x_0, G)$. Then

$$\phi([f_1; g_1]*[f_2; g_2]) = \phi([f_1+g_1f_2; g_1g_2]) = ([f_1+g_1f_2+k_{s_1s_2}]; g_1g_2)$$

while

$$\begin{aligned} \phi([f_1;g_1]) \circ \phi[f_2;g_2]) &= ([f_1+k_{s_1}],g_1) \circ ([f_2+k_{s_2}],g_2) \\ &= ([f_1+k_{s_1}+f_2+k_{s_2}], g_1g_2). \end{aligned}$$

Since $f_2 + k_{s_2}$ is a loop at x_0 and $k_{s_1}\rho$ is a trace of a homotopy of order $g_1, f_2 + k_{s_2}$ is homotopic to $k_{s_1}\rho + g_1(f_2 + k_{s_2}) + k_{s_1}$ by Lemma 2. Therefore we obtain

$$f_1 + ks_1 + f_2 + ks_2 \sim f_1 + ks_1 + k_{s_1}\rho + g_1(f + ks_2) + ks_1 \ \sim f_1 + g_1(f_2 + ks_2) + ks_1 \ \sim f_1 + g_1f_2 + ks_1s_2.$$

Conversely, given a commutative diagram with exact rows and ϕ an isomorphism:

$$0 \longrightarrow G(X, x_0) \xrightarrow{i_G \atop i_1} G(X, x_0, G) \xrightarrow{j_G \atop i_2} G \longrightarrow 0$$

define $\phi: G \longrightarrow E(X, \pi_0, G)$ to be $\phi^{-1}i_2$. Use the commutativity of the diagram to show $j_G \phi = 1_G$. Then $E(X, x_0, G)$ is a split extension of $G(X, x_0)$ by G. If we apply Theorem 3, (X, G) admits a family of preferred traces at x_0 .

COROLLARY 5. A transformation group (X, G) admits a family of preferred traces at x_0 and G abelian if and only if $0 \longrightarrow G(X, x_0) \longrightarrow E(X, x_0, G) \longrightarrow G \longrightarrow 0$ is a split exact sequence of Z-modules.

Proof. It is clear by Theorem 4 and $G(X, x_0)$ abelian.

REMARK. Every transformation group (X, R) has the abelian evaluation subgroup $E(X, x_0, R)$.

In [2], F. Rhodes showed that if (G, G) admits a family of preferred paths at e, then $\sigma(X, x_0, G)$ is isomorphic to $\pi_1(X, x_0) \times G$. In general, the converse is not true.

THEOREM 6. A transformation group (X, G) admits a family of preferred strong paths at x_0 if and only if there exists an isomorphism ϕ : $\pi_1(X, x_0) \times G \longrightarrow \sigma(X, x_0, G)$ such that the diagram commutes

$$0 \longrightarrow \pi_1(X, x_0) \underbrace{\stackrel{i_G}{\longrightarrow}}_{i_1} \sigma(X, x_0, G) \xrightarrow{j_G}_{\pi_2} G \longrightarrow 0$$

Proof. Only if: It is proved by the same method of Theorem 4.

If: Define $\phi: G \longrightarrow \sigma(X, x_0, G)$ by $\phi = \phi \circ i_2$. If we use the commutatity of the diagram and $\pi_2 \circ i_2 = 1_G$ and ϕ an isomorphism, then we have $j_G \circ \phi = 1_G$. For each $g \in G$, let $\phi(g) = [k_g \rho; g]$. Then $K = \{k_g: k_g \rho$ is the representative path of $\phi(g)\}$ is a family of preferred paths at x_0 . We have to show that K is a family of preferred strong paths at x_0 . Let f is any loop at x_0 and k_g be any element of K. Since

$$([f], e) = ([x_0'], g) \circ ([f], g^{-1})$$

in $\pi_1(X, x_0) \times G$, we have

A representation of $E(X, x_0, G)$ in terms of $G(X, x_0)$

$$[f; e] = i_G([f]) = \phi i_1([f]) = \phi([f], e)$$

= $\phi(([x_0'], g) \circ ([f], g^{-1}))$
= $\phi([x_0'], g) * \phi([f], g^{-1})$
= $[x_0' + k_g \rho; g] * [f + k_{g^{-1}}\rho; g^{-1}]$
= $[x_0' + k_g \rho; g] * [f + g^{-1}k_g; g^{-1}]$
= $[x_0' + k_g \rho + gf + k_g; e]$
= $[k_g \rho + gf + k_g; e]$

Thus f is homotopic to $k_g \rho + g f + k_g$. Therefore K is a family of preferred strong paths at x_0 .

The existence of a family of preferred traces (preferred strong paths) on a transformation group does not depend to base point.

THEOREM 7. Let (X, G) be a transformation group. If λ is a path from x_0 to x_1 , then a family of preferred strong paths at x_0 gives rise to a family of preferred strong paths at x_1 and a family of preferred traces at x_0 induces a family of preferred traces at x_1 .

Proof. Let $K = \{k_g : g \in G\}$ be a family of preferred strong paths at x_0 . For each g in G, let $h_g = g\lambda\rho + k_g + \lambda$. It is easy to show that $H = \{h_g : g \in G\}$ is a family of preferred paths at x_1 . Let f be any loop at x_1 and h_g be any element of H. Then we have

$$h_{g}\rho + gf + h_{g} = (g\lambda\rho + k_{g} + \lambda)\rho + gf + (g\lambda\rho + k_{g} + \lambda)$$
$$= \lambda\rho + k_{p}\rho + g(\lambda + f + \lambda\rho) + k_{g} + \lambda.$$

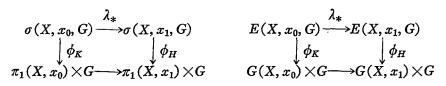
Since $\lambda + f + \lambda \rho$ is a loop at x_0 , $\lambda + f + \lambda \rho$ is homotopic to $k_g \rho + g(\lambda + f + \lambda \rho) + k_g$. Thus we obtain that f is homotopic to $h_g \rho + g f + h_g$.

Let $K = \{k_g : g \in G\}$ be a family of preferred traces at x_0 and $h_g = g\lambda\rho + k_g + \lambda$. Since the induced isomorphism λ_* carries $E(X, x_0, G)$ isomorphically on $E(X, x_1, G)$,

$$\lambda_*[k_g\rho;g] = [\lambda\rho + k_g\rho + g\lambda;g] = [h_g\rho;g]$$

belongs to $E(X, x_1, G)$. Thus $H = \{h_g : g \in G\}$ is a family of preferred traces at x_1 .

The representation is natural with respect to change of base point in the sense that the following two diagrams are commutative.



References

- D.H. Gottlieb, A certain subgroup of the fundamental group, Amer, J. Math. 87(1965), 840-856.
- 2. F. Rhodes, On the fundamental group of a transformation group Proc. London Math. Soc. 16(1966), 635-650.
- 3. F. Rhodes, Homotopy groups of a transformation group. Canadian J. Math. 21(1967), 1123-1136.
- 4. Moo Ha Woo and Yeon Soo Yoon, Certain Subgroups of Homotopy groups of a transformation group, J. Korean Math. Soc. 20 (1983), 223-233.

Korea University Seoul 132, Korea