HIGHER LEVEL SIGNATURES ON VALUATION RINGS

JONG IN LIM

Introduction

In [1] E. Becker developes a theory of what he calls orderings of higher level over fields. These generalize orderings of a field in such a way that one can generalize many of the usual results in formally real fields. In [8], Kleinstein and Rosenberg show that there is a natural extension of the usual Witt ring of equivalence classes of non-degenerate bilinear forms over a field to the Witt ring of higher level.

In [5], T. Craven defines the Witt ring of higher level over a semilocal ring and extends many of the results by Kleinstein and Rosenberg. In this paper we apply the results by T. Craven to valuation ring Λ . Thus we can obtain a generalization of the result by Knebusch on the extension of a signature of Λ to a signature of the quotient field of Λ . As a Corollary we obtain a result on sum of 2^n -powers problem. We also prove that the Dress' theorem [6] can be generalized to higher level case if Λ is a local ring with usual conditions. Finally we give two examples convincing us the necessity of the condition Λ being a valuation ring in our Corollary.

All of the notations and terminologies follow those of T. Craven.

Higher level signature on valuation rings

Let A be a connected semilocal ring with no residue class field having 2 elements. We denote the group of units of A by A^* , write $G_n(A) = A^*/A^{*2n}$ for the group of units modulo 2^n -powers, and $\langle a \rangle_n$ for aA^{*2n} where $a \in A^*$.

DEFINITION 1. The Witt ring of level n of A, denoted $W_n(A)$, is the integral groupring $Z[G_n(A)]$ modulo the ideal $J_n(A)$ generated by $\langle 1 \rangle_n + \langle -1 \rangle_n$ and all elements of the form

Received October 5, 1985.

$$(\sum_{0}^{2^{n}-1}\langle x^{i}\rangle_{n})(\langle 1\rangle_{n}-\langle \lambda_{1}^{2^{n}}+\lambda_{2}^{2^{n}}\cdot x\rangle_{n})=(\langle 1\rangle_{n}-\langle \lambda^{2^{n}}_{1}+\lambda^{2^{n}}_{2}\cdot x\rangle_{n})$$

$$\prod_{0}^{n-1}(\langle 1\rangle_{n}+\langle x^{2^{i}}\rangle_{n})$$

whenever x and $\lambda_1 + \lambda_2 \cdot x$ are both in A^* .

Let C_n denote the group of 2^n —th roots of unity in the complex numbers and U_n denote the ring of integers of the cyclotomic field $Q(C_n)$. If $\sigma: A^* \longrightarrow C_n$ is a homomorphism which extends to $\sigma: W_n(A) \longrightarrow U_n$; that is, when σ is extended to a homomorphism $Z[G_n(A)] \longrightarrow U_n$, its kernel contains $J_n(A)$, we call σ a signature of level n. Let $P = P(\sigma) = \ker(\sigma: A^* \longrightarrow C_n)$, so that $A^*/P \cong C_m$ for some $m \le n$. In this case we shall say σ is a signature of exact level m. In general, we shall speak of signatures of higher level without specifying n, When n is a field, these definitons coincide with those of [1] and in this case n is an ordering of level n.

DEFINITION 2. Let σ be a signature of exact level n. Define $Q(\sigma) = \{\sum \lambda_i^{2n} a_i | \lambda_i \in A, \sum \lambda_i A = A, a_i \in P(\sigma)\}$.

Note that $Q(\sigma) = P(\sigma)$ if A is a field. Now let $\varphi : A \longrightarrow B$ be a homomorphism between two semilocal rings which satisfy our usual conditions.

DEFINITION 3. Let σ, τ be signatures of exact level n of A and B respectively. Let $\varphi_*: W_n(A) \longrightarrow W_n(B)$ be the homomorphism induced by φ . We say τ is a faithful extension of σ if the homomorphisms

$$W_n(A) \xrightarrow{\varphi_*} W_n(B) \xrightarrow{\tau} U_n \text{ and } W_n(A) \xrightarrow{\sigma} U_n$$

have the same kernel.

In [5], T. Craven defines $S_n(A, B) = \{\sum \lambda_i^{2n} \varphi(a_i) | \lambda_i \in B, \sum \lambda_i B = B, a_i \in P(\sigma)\}$ for σ and φ as above. Then he shows the signature of exact level n can be extended faithfully to a signature of B if and only if $0 \notin S_n(A, B)$.

LEMMA 4. Let A be a local ring with maximal ideal \mathcal{M} such that $|A/\mathcal{M}| \neq 2$. Then every element of $Q(\sigma)$ either lies in $P(\sigma)$ or is a sum of two elements of $P(\sigma)$ [5].

Now let A be a valuation ring with quotient field K, maximal ideal \mathcal{M} . Assume $|A/\mathcal{M}| \neq 2$ and $2 \in A^*$. In [11], M. Knebusch proved any signature of level 1 of A can be extended to a signature of level 1 of K. We have the following complete generalization in our higher level case.

THEOREM 5. Let A be as above. Then each signature of higher level of A can be extended faithfully to a signature of higher level of K.

Proof. Let σ be a signature of exact level n of A. By the remark above Lemma 4, it will suffice to show $0 \notin S_n(A, K)$. Suppose $\lambda_1^{2n}a_1 + \cdots + \lambda_k^{2n}a_k = 0$ with $\lambda_i \in A$, $a_i \in P(\sigma)$ for $1 \le i \le k$. If $\lambda_i \in A^*$ for some $1 \le i \le k$, then $\lambda_1^{2n}a_1 + \cdots + \lambda_k^{2n}a_k \in Q(\sigma)$. Since A is a local ring, we have $\lambda_1^{2n}a_1 + \cdots + \lambda_k^{2n}a_k$ is a sum of two elements of $P(\sigma)$ by Lemma 4. Now we have $\lambda_1^{2n}a_1 + \cdots + \lambda_k^{2n}a_k = a + b = 0$ for some $a, b \in P(\sigma)$, then a = -b, and hence $1 = \sigma(a) = \sigma(-b) = -1$, a contradiction. Therefore we may assume $\lambda_i \notin A^*$ for $1 \le i \le k$. We denote the (additive) valuation of A by v. If $v(\lambda_1) = \min\{v(\lambda_i) \mid 1 \le i \le k\}$, then $v\left(\frac{\lambda_i}{\lambda_1}\right) = v(\lambda_i) - v(\lambda_1)$ ≥ 0 , i. e. $\frac{\lambda_i}{\lambda_1} \in A$ for $1 \le i \le k$. Our equation reduces to $1 \cdot a_1 + \lambda'_2^{2n}a_2 + \cdots + \lambda'_k^{2n}a_k = 0$, $\lambda_i' \in A$, $a_i \in P(\sigma)$ for $2 \le i \le k$. Sine $1 \in A^*$, we have a

REMARK. If $1+m \subset P(\sigma)$, we say σ is compatible with A. If this is the case, we have the following simple proof. Denote the residue field A/m by k. Then the character $\bar{\sigma}$ defined by $\bar{\sigma}(\bar{x}) = \sigma(x)$ is a well-defined signature of exact level n of k. Since $\bar{\sigma}$ can be lifted faithfully to a signature of K[7], we have proved our theorem.

contradiction. Thus $0 \notin S_n(A, K)$, and our signature can be extended

faithfully to K.

Now let $\sum (A)$ denote the set of all elements $\sum \lambda_i^{2^n}$ such that $\sum \lambda_i A = A$ together with elements x such that xy=z where y and z are such sums of 2^n —powers. If A is a field then $\sum (A) = \sum A^{2^n}$. For A semilocal and n=1, $\sum (A) = \sum A^2$ by the representation criterion for quadratic forms [10].

COROLLARY 6. Let A and K be as in Theorem 5. Then if a unit element a of A belongs to $\sum K^{2n}$, a is an element of $\sum (A)$.

In [3], Kneser, J-L Colliot-Thélène proved that a is already in $\sum A^2$

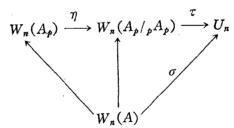
if $a \in A^* \cap \sum F^2$. Since $\sum (A) = \sum A^2$ for n=1, Corollary 6 is a generalization of this in higher level case.

Proof. Since $a \in \sum K^{2n}$, $a \in \cap$ {orderings of level n of K} [2]. Theorem 5 says any sinature of higher level of A can be extended faithfully to K, so that $a \in \cap P(\sigma)$ where σ ranges over all signatures of level n of A. By Theorem 3.7 of [5], $a \in \sum (A)$.

If σ is a usual signature of level 1 of a commutative ring A with $2 \in A^*$, Dress' Theorem [6] guarantees the existence of some prime ideal p of A such that σ can be extended to A_p . We can generalize this theorem to higher level signature case for local ring A.

THEOREM 7. Let A be a local domain with $|A/M| \neq 2$ and $2 \in A^*$. If σ is a signature of higher level of A, there exists a prime ideal p of A such that σ can be extended faithfully to a signature of higher level of A_n .

Proof. Since A is a local ring, there exists a prime ideal p of A such that σ can be extended faithfully to the quotient field A(p) of the integral domain A/p [5]. Let τ denote the extension of σ . Since $A(p) = A_p/p A_p$, we have the following diagram.



where η is the natural homomorphism. Since the left triangle commutes, it is clear $\tau\eta$ is an extension of σ on A_p .

Now we give two examples which show the necessity of our condition on A in Corollary 6.

EXAMPLE 8. Let $A_0 = R[x, y, z]/(x^2+y^2+z^2)$, p = (x, y, z) and $A = (A_0)_p$. Then A is a local domain of Krull dimension 2. The element $-1 \in A^*$ is a sum of two squares in K, but -1 is not a sum of squares in A[3].

EXAMPLE 9. let k be a real-closed field, and S_0 be the set of irred-

ucible polynomials $s \in k[x, y]$ such that s generate a real prime ideal. Let S be the multiplicative set generated by S_0 , and $A = S^{-1}(k[x, y])$. Then A is a PID. If $f(x, y) = x^3 + (xy - x^2 - 1)^2 f(x, y)$ is a positive semidefinite polynomical with the property that $f^{2r+1} \notin \sum A^2$ for any r. Now we have f is a sum of four squares in k(x, y). If $A' = A[f^{-1}]$, then A' is a PID. The unit element $f \notin \sum A'^2$ [4].

References

- 1. E. Becker, Hereditarily Pythagorean Fields and Orderings of Higher level, IMPA No. 29, Rio de Janeiro, 1978.
- Summen n-ter Potenzen in Körpern, J. Reine und Angew. Math. 307-308, 8-30, 1979.
- 3. M. Choi, T. Lam, B. Reznick and A. Rosenberg, Sums of squares in some integral domains, J. Algebra, 65, 234-256, 1980.
- 4. M. Choi, Z. Dai, T. Lam and B. Reznick, The Pythagoras number of some affine algebras and local algebra, J. Reine und Angew. 336, 45-82, 1982.
- 5. T. Craven, Orderings of Higher Level and Semilocal Rings, Math. Z, 176, 577-588, 1981.
- A. Dress, The Weak Local Global Principle in Algebraic K-Theory, Comm. Alg. 3(7), 615-661, 1975.
- 7. J. Harman and A. Rosenberg, Extensions of Orderings of Higher Level, preprint.
- 8. J. Kleinstein and A. Rosenberg, Witt Rings of Higher Level, Bull. Inst. Math. Acad. Sinica 8, 353-363, 1980.
- 9. M. Knebusch, On the Local Theory of Signature and Reduced Quadratic Forms, Abh. Math. Sem. Univ. Hamburg 51, 149-195, 1981.
- 10. _____, Grothendieck und Wittringe von Nichtausgearteten Symmetrischen Biliner Formen, S.-B. Heidelberg, Akad. Wiss. Math. Natur. K1. 93-157, Mr 42#6001, 1969/70.
- M. Knebusch, A. Rosenberg and R. Ware, Signatures on Semilocal rings,
 J. Alg. 26, 208-250, 1973.
- T. Lam, Orderings, Valuations and Quadratic Forms, CBMS No. 52, AMS. 1983.

Korea University Seoul 132, Korea