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SELFCOMMUTATORS IN AN INFINITE SEMIFINITE FACTOR

SA GE Lee AND Sunc JE CHO

1. Introduction.

Let L(H) be the *-algebra of all (bounded linear) operators on a
(complex) Hilbert space H of infinite dimension. Let A be a *—subal-
gebra of L(H). An element z€ A is called a selfcommutator in A, if
it can be written as the form z=y*y—yy* for some y& A.

In the case when H is an infinite dimensional separable Hilbert space,
H. Radjavi succeeded to characterize the selfcommutators = in L(H) for
the first time, in terms of the spectrum of ¢;(x), where o, : L(H)—
L(H)/Jy is the quotient mapping and J; is the largest nontrivial closed
(two sided) ideal of L(H) [9]). His characterization of the selfcommu-
tators in L(H) was extended to the case when H is a Hilbert space of
arbitrary infinite dimension. Since an infinite type I factor A contained
in L(H), A is *-isomorphic onto some L(K), where K is a suitable
infinite dimensional Hilbert space, the work [2] is regarded as a char-
acterization of the selfcommutators in an arbitrary I.~factor A. But there
is still another kind of an infinite semifinite factor, namely, Il.—factor.

In this article, we are going to present a unified treatment of the ch-
aracterization of selfcommutators in A comprising both cases when A is
either an I.-or Il.—factor in L(H), where H is any given Hilbert space
of an arbitrarily infinite dimension.

2. Preliminaries.

LEMMA 1. Let z; and z; be two normal operators in a von Neumann
algebra A. Suppose that x1 and x5 are similar in A, that is, there is
an invertible element a < A such that a ‘zia=x5. Then, they are unitarily
equivalent in A, namely, there is a unitary element u € A such that u*zu
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=gz, (cf. p.99 [3] Problem 152 and its Corollary)

Proof. Let a=up be the-left polar decomposition of a with the partial
isometry # and p=(g*a)1/2. It is well known that € A. By duplicating
the proof of Corollary (p.99 [3]) in (p. 306[3]), we see that u lzxu=
x, with €A, as desired. '

LEMMA 2. Ar operator x in von Neumann algebra A is a selfcommu-
tator in A, that is, x=y*y—yy* for some y€ A, if and only if it is
the difference of two positive operators in A which are umtarzly equzvalent
in A (cf. p.77[2] Proposztzan 6.2). ‘ :

Proof. (—) By replacing y with y+AI fofﬂéonrle' real i}ﬁmber A we
may assume that y is an invertible element, with the aid of the fact that

(y+AD*(y+AI) — (y+AD) (+AD*

still remains to be z itself. We consider the left polar decomposition
y—-u} of y. Since ' is a umtary operator (in A), ¥ y'-pu up—pz
while yy*=up2u®. Hence z=p2—up?u* with p2>0.

(«) Let x=a—uau*, where a is a positive operator a€A and z is
a unitary operator in A. We put y=up. Then, clearly, =y y—yy*,
with yE A. _ o )

From now on we only consider the case when A is an infinite semi-
finite factor acting on the Hilbert space H of arbitrary infinite dimension.
Let rank (x) denote the relative rank of an element zE€ A as defined in
(Definition 1 [7] p.107). For the identity operator I€A, we put h=
rank (I). For any cardinal number a with Ro<a<h, let J, be the
closed ideal in A by defining as the norm closure of the ideal I,= {z &
A rrank ()<la} in A (p.108, Definition 3 and Proposition 1 [7]).
Let ¢, : A—A/J, be the quotient mapping and for z€ A4, let ¢,(x)
denote the spectrum of g,(z), where g,(z) is regarded as an element
of A/J,.

In what follows we describe a theory parallel to that developed in [2].
When the projection whose range is a closed subspace K of H belongs
to A, we simply denote by K€ A and call K belongs to A, without
confusion. S

LEMMA 3. Let 2€ A and 0. Then there exists a closed subspace
K of H, containing the kernal of. A such that K& A,
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lzflI<ell f1l for all fEK
such that f=0, and

lzfll=ell £l for all fF&K.

(In the presence of K with K=0, the firstiinquality is a wvacuous state-
ment.)

Furtheormore, if z is a normal operator (contained in A), there exists
such a closed subspace which reduces x.

Proof. One can prove the lemma first for normal operator by using
the spectral theorem, noticing that any range space of a spectral proje-
ction belongs to A. Then apply this to the positive part of the polar
decomposition of an arbitrary z€A (cf. p.63 Lemma 1.1 [2] and a
remark preceeding to it).

LEMMA 4. Let €A and let £>0. Suppose K is a closed subspace of
H such that Ke A, |zfl|<ellfll for all fEK with £f0, and suppose
L is a closed subspace of H such that LEA such that |zf||>ellfll for
all feL*. Then rank K <rank L and rank L* <rank K', where rank
K denote the relative rank of the projection in A, whose range is K.
(Similarly, rank L, rank L*,...etc will be understood from now on) [7].

Proof. Let p,q denote respectively the projections in A whose range
are L, K. If feK, £x0, then |lzf||<ellfll and hence f& L+, It follows
that KN L*={0}. Since the range projection of pg is p—p/\(1—q),
where g is the range of K (p.119, Proposition 2.5.14 [4]), we see
that rank (pg) =rank (¢p) (p.94, Theorem 4.3 [10])=rank (g—g/
(1—p)), since the range projection of gp is ¢g—g/\(1—p). But g/
(1—2) =0 since g/\ (1—p) is the projection whose range is K NL* (=
{0}). Thus rank (pg)=rankq. It follows that rank K=rank g=rank
(pq) <rank p=rank L.

Similarly let r, s denote respectively the projections in A whose ranges

are K* and L*. By the analagous argument as above we can easily
prove that rank L* <rank K*.

REMARK 5. The subspace given in Lemma 3 is not unique, However
it is an immediate result of Lemma 4 with K=L that all the subspaces
satisfying the conditions of Lemma 3 have the same relative rank when-
ever any one of them has an infinite relative rank and that they have
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all finite relative rank whenever any one of them has a finite relative
rank (cf. p. 107, Definition 2 [7]). For the first case we put §,(z) to
be the common relative rank of all subspaces K satisfying the condition
of Lemma 3, and for the second case we put 8,(z) =0.

DEFINITION 6. We define the relative approximate nullity d(z) of
€A to be

d(x) =min d.(x).
From here on, « will be an infinite cardinal w1th a<h.

DerFmniTiON 7. A linear subspace K of H with K€ A is called relati-
vely a-closed if there is a closed subspace L of H with L&A such that
LcK and such that rank (KN L*) <@, where K denote the norm clo-
sure of K. '

LEMMA 8. If K and L are linear subspaces of H- and K is closed
while rank (L) <a, with K, LEA, then K+L is relatively a—closed.

Proof. K+Lc (K+L)-, K+Lc (K+L)-, (K+L)y-< (K+L)-,
consequently, (K+L)-=(K+L)-. Thus (K+L)-€A, since K, LeA
and (K+L)-=K'LeA (p.119, Proposition 2.5.14). Now KCK-+L
and rank((K+4L)-AK?*) =rank((K+L)-/\K*) =rank ((KVL) AK*) =
rank(ZL—LAK) (p.94, Corollary 4.4 [10] the parallelogram rule) <
rank (L) <a. By Definition 7, we see that K+L is relatively a-closed..

LEMMA 9. Let x <A be an operator whose restriction _{{ (€A) is one-
to—one. Let M be a linear subspace of K such that MEA and that
x(M) is a closed subspace of H. Then

rank M* < rank[«(M)]*.
Proof. We note that [¢(M)]-<A. The rest of the proof is similar
to that of Lemma 4 and is omitted.

The proof of the next theorem can be done if we immitate the proof
of Theorem 2.6 [2] p.64. There Lemmas 1.1, 1.2, 2.4 and Theorem
0 in [2] were employed. In our situation we can apply Lemmas 3,4, 8
in our article and Theorem 1 (p.110 [7]). We omit the tedlous ex-
ecution of the proof.

THEOREM 10. The following five conditions are equivalent for zEA.
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(i) = is left invertible in A modulo I,.

(ii) qq(x) is left invertible in A/J,

(ili) =« is bounded below on some closed subspace K belonging to A,
with rank (K4)<a.

(iv) 6(x)<a. (v) rank(x)<a and x(H) is relatively a—closed.

DEFINITION 11. z(€4) is called a relatively a-Fredholm operator if
rank () <a, rank (HOX(H)") <a and z(H) is relatively a—~closed.

TyroreM 12 (A general Atkinson’s theorem). Let x=A. The follo-
wing are equivalent.
(1) =z is a relatively a~Fredholm operator.
(1) «a is an invertible element in A modulo I,.
(1) g.(x) is an invertible element in A/J,.

Proof. This is proved in a similar way as that for Theorem 2.8 [2]
p.66. We apply Theorem 10 just as they did (Theorem 2.6 [2] p. 64)
to prove Theorem 2.8 [2].

DerFINITION 13. Let € A. The relative approximaie point spectrum
of 2, of weight a, denoted z,(zx), is the set of all complex numbers
A such that 6 (z—AI) >a. The relative compression spectrum of z, of
weight a, denoted 7,(z), is the set of all complex numbers 2 such that
rank (HS[(z—AI) (H)]) =a. The relative spectrum of z, of weight «,
denoted o, (z) is defined by o, (2) =7,(z) Ur.(2).

In what follows, we list a series of results analogous to those in [2],
starting p. 67 in there. We shall omit the obvious proofs.

THEOREM 14. Let x=A and h=rank(I), where I is the identity op-

erator in A. Then the following conditions are equivalent.

(i) 1€z, (2)

(i1) gofx) —2A9,(I) is not left invertible in A/J,.

(iii) Ewvery closed subspace K of H, with KEA, on which z—21iI is
bounded below, has relative codimension> «.

(iv) z—AI is not left invertible in A modulo I,.

(v) Either A is an eigenvalue of x of relative multiplicity at least
a(i.e., rank (null space (x—2I)>a), or (x—2AI) (H) is not re-
latively a—-closed.

COROLLARY 15. If a€J,, then m,(z)=1{0}.
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THEOREM 16. Let x €A, h=rank(l). The following are equivalent.
(i) A€0,(2).
(i) g.(x) —2Ag.,(I) is not invertible in A/J,.
(it} x—AI is not invertible in A modulo I,.
(iv) Either A is an eigenvalue of z of relative multiplicity at least a,
or rank (HO[(z—AI) (H)]") =a, or (x—AI) (H) is not relatively
a—closed.

COROLLARY 17. 0,(2) is precisely the ordinary spectrum of q.(zx) in
A/J,. Hence ¢,(x) is nonempty and compact.

THEOREM 18. Let z€A (Wo<a<h, as always). Then r,(x) contains
the boundary of o,(x).

Let = be a normal operator in A(CL(H)). By a version of the sp-
ectral theorem (cf. Section 97 of [3] and Section X.5 of [1]), there
is an extended real valued positive measure y defined on a g—algebra on
X and a unitary operator U : H—> L2(X, ) such that UzU* is the
multiplication operator acting on L2(X, ) defined by a suitable essentially
bounded measurable function ¢.

THEOREM 19. Let Ry=U*{f<L2(X,p) : f vanishes off ¢ 1(Y)}.
Then 2€0,(x) if and only if rank(py)>a for every measurable neig-
hborhood Y of A where py(EA) is the projection whose range is Ry.

LEMMA 20. If S is a compact subset in the plane and rtank(ps)>a
then m,(x) NS¥>d.

THEOREM 21. Let x be a normal operator in A. Then xE€J, if and
only if o,(x)={0}.

THEOREM 22. Let xEA. Then
(1) 7:.(2)=7.(z+y), for any yEJ,.
(i) o.(z)=0.(z+y), for any yEJ,.

THEOREM 23. Let x be a normal operator in A. Then there is a nor-
mal operator yEJ, such that y commutes with x and

o (z+y) =0.(z),

where o (+) denote the usual spectrum of (+) ((-) €L(H)).

COROLLARY 24. If x is a normal operator in A, then
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o.(x)= N olaty).
y&Ja

TUEOREM 25. Let vEA. Then y&J, if and only if 0,(zx) =0,(x+¥)
for all x<A.

Recall that an infinite cardinal a is called Wy-irregular if it is the
sum of countably many cardinals stricly smaller than a. A cardinal wh-
ich is not Wg-irregular is said to be Wy-regular (p.72 [2]).

DEFINITION 26. An operator yE A will be called relatively a—Hilbert-
Schmidt operator if H= i‘, @®H;, H;=A, where rank([y(H)])<a
im1

for all 7=1,2,..., and _i}HylHin<°°-

THEOREM 27. Let h{(=rank I) be an Ng—irrdgular cardinal such that
>Ny Then every normal operator x(EA) can be written x=d-+y,
where d is a diagonal operator and y is a relatively h-Hilbert—-Schmidt
operator (and hence y&Jy).

THEOREM 28. Let h be an Wy—~irregular cardinal with h >y Then
any two normal operator x and %z in A are unitarily equivalent modulo
Ji-

PROPOSITION 29. Let x(€A) be a selfcommutator. Then o,(x) cont-
aines at least one nonnegative real number and at least one nonpositive
real number.

3. The characterization of the selfcommutators in A.

LEMMA 30. Let x be a normal operator in A and h=rank(I), where
I is the identity operator in A. Then x may be decomposed, x=x; P x3,
where each x; acts on closed subspace H; with H; €A such that the ide-
ntity operator I; on H; has the relative rank h with respect to A; (Here
A; denotes the reduced von Neumann algebra with respect to H;SA),
such that

lae— A< Fller =2 and 2€ap(ay).

Proof. This can be proven by the multipleation operator version of
the spectral theorem. We omit the detail.
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LEMMA 31. Let x be a normal element in A. Let A€o, (x). Then z
can be written as x='§0@ z, such that each x; acts on a closed sub-
space H; with H;€ A, rank(H,)=h, and \z,—A)| <2 "|zc—2A||, for all
n=0,1,2,.... N ,

- LEMMA 32. Suppose x is a hefmitz’an element in A bf the fofm =
; C—Bx, such tbat each x; acts on a closed subspace H; with H EA,

rank(H ) h, for all i=0,1,2,.... We thus can regared each z; acts
on Hitself. Define the operators Y 2a on H, for n=0,1,2, ..., by

n n ’
yn=§ Z9; and 2,=— Zo T2i+1-
i= i=

If there is bound r such that ||y,|<r and ||z.||<r for all n=0,1,2,...
then x is a selfcommutator in A.

Proof: D'eﬁnemp on H by p= 2})@ pi, where
pl:O’ -PZi#yi’ i:Os 1, 29 31 ‘---a
Poin1==2i-1, 1=1,2,3,.
similarly, deﬁne q= Z @ q; where qo—() g2 =%¥i-1, 1=1,2,3,..., and

qz,ﬂ z;, i=0,1,2,.... Then p and ¢ are bounded hermitian operators
in A. In fact |jpl|<r and llgll<r. What it remains to verify is that p
and ¢ are unitarily equivalent via @ unitary element z in A. But this
will be clearified by the next lemma, whose is omitted.

LEMMA 33. Let y=A and {e,} o1 be an orthogonal family of proje-
ctions in A such that f_',;l e,=TF with respect to the strong eperator topo-
log“y Assume that eac"I: H;=e;(H) reduces y. We put y;=y|H;. Let o
be a permutatzon of {1,2,3,...}, that is, it is a one-to—one function of
the set of all natwural numbers. Let us consider y,= ig @ .. Here, v,

is defined as the operator_ agtzng on H,p», given by u,pyiust, where
uyy=Ve | Hiy Voir €A, VotdVod™ =502y Vot vop=e;. Define u: H
—>-H by ulHi=u,», 1=1,2,3,. Then - zs ‘a amta:ry operator on
H such that uc A and uyn*=y,.: : SR S
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PROPOSITION 34. If.-z.is a ]zermzttan aperatar in: A and - OEO';,(:C)
tken z i5 a selfeommutatar : e AR

Proof Decompose z according to Lemma 31 and then apply Lemma
32.

COROLLARY 35. If z(€A) is a hemitian operator with rank (null
space of x)=h, then z is a selfcommutator.

COROLLARY 36. If z(€A) is hemitian operator and xE€J, then it
is a sel fecommutator in A.

PROPOSITION 37. Let z(€A) be a hermitian operator. 1f o3(x) has
both a positive and a negative real number, then x is a selfcommutator.

Proof. On can argue just as the proof of Proposition 6.8 (p. 78
[2]). We omit the details.

THEOREM 38. Let A be an infinite semifinite factor on a Hilbert sp-
ace and I be the identity operator of A. Let x(EA) a sel fadjoint ele-
ment of A. Then z is a selfcommutator in A if and only if o,(x)
contains at least one nonnegative and at least one nonpositive real number.

Proof. We simply combine Propositions 29, 34 and 37.
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