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SELFCOMMUTATORS IN AN INFINITE SEMIFINITE FACTOR

SA GE LEE AND SUNG ]E CHO

1. Introduction.

Let L (H) be the *-algebra of all (bounded linear) operators on a
(complex) Hilbert space H of infinite dimension. Let A be a *-subal­
gebra of L(H). An element .'l:EA is called a seljcommutator in A, if
it can be written as the form x=y*y-yy* for some yEA.

In the case when H is an infinite dimensional separable Hilbert space,
H. Radjavi succeeded to characterize the selfcommutators x in L (H) for
the first time, in terms of the spectrum of (Jh(X), where (Jh: L(H)~
L (H) I Jh is the quotient mapping and Jh is the largest nontrivial closed
(two sided) ideal of L (H) [9]. His characterization of the selfcommu­
tators in L(H) was extended to the case when H is a Hilbert space of
arbitrary infinite dimension. Since an infinite type I factor A contained
in L (H), A is *-isomorphic onto some L (K), where K is a suitable
infinite dimensional Hilbert space, the work [2J is regarded as a char­
acterization of the selfcommutators in an arbitrary loo-factor A. But there
is still another kind of an infinite semifinite factor, namely, Hoc-factor.

In this article, we are going to present a unified treatment of the ch­
aracterization of selfcommutators in A comprising both cases when A is
either an loo-or nco-factor in L (H), where H is any given Hilbert space
of an arbitrarily infinite dimension.

2. Preliminaries.

LEMMA 1. Let Xl and X2 be two normal operators in a von Neumann
algebra A. Suppose that .'1:1 and X2 are similar in A, that is, there is
an invertible element aEA such that a- l.'l:la=.'l:2' Then, they are unitarily
equivalent in A, namely, there is a unitary element u EA such that U*XlU
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=.'1:2 (cf. p.99 [3J Problem 152 and its Corollary)

Proof. Let a=up be the-left polar decomposition of a with the partial
isometry u and p= (a*a) 112. It is well known that uEA. By duplicating
the proof of Corollary (p.99 [3J) in (p. 306[3J), we see that U-1X1U=

X2 with u E A, as desired.

LEMMA 2. An operator x in von Neumann algebra Ais a selfc.ommu­
tator in A, that is, a:=y*y----:yy* for some yEA, if and only if it is
the dijJerence of two positive operators in A which are unitarily equivalent
in A (cf. p.77[2J Proposition 6.2). - - -

Proof. (~) By replacing y with y+}.l for some real number}. we
may assume that y is an invertible element, with the aid of the fact that

(y+U) *(y+}.I) - (y+}.!) (y+U) * -
still remains to be x itself. We consider the left polar decompOSition
y=up of y. - Since --~ isa unitary operator Cm A), y*Y=PU*up=p2,
while yy*=up2u*. Hence x=pi-up2u* with p2 Z 0.

(-) Let .'C=a-uau*, where a is a positive operator aEA and u is
a unitary operator in A. We put y=up. Then, clearly, x=y*y-yy*,
with yEA. - _ _

From now on we only consicier the case when A is ~n infinite selni­
finite factor actillg _on the Hilbert space H of arbitrary infinite d.j,me~sion.

Let rank (x) _den()te the relative rank of an element x E A as defined in
(Definition 1 [7J p. 107). For the identity operator lEA, we put h=

rank (1). For any cardinal number a with Nosash, let Ja be the
closed ideal in A by defining as the norm closure of the ideal la = {x E
A : rank (x) <a} in A (p.108, Definition 3 and Proposition 1 [7J).
Let qa : A~AjJa be the quotient mapping and for~EA,__ let O"a(.'C)
denote the spectrum of qa (x), where qa (x) is regarded as an element
of AjJa •

In what follows we describe a theory parallel to that developed in [2J.
When the projection whose range is a closed subspace K of H belongs
to A, we simply denote by K E A and call K belongs to A, without
confusion. --- - ---- -----

LEMMA 3. Let xEA and e>O. Then there exists a ciosed subspace
K of H, containing the kernal of- A such that K E A,
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Ilxfll<ellfll for all fEK

such that f~O, and
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IIxfll~ellfll for all f$.K.

(In the presence of K with K=O, the jirsiiJnquality is a vacuous state­
ment. )
Furtheormore, if x is a normal operator (contained in A), there exists
such a closed subspace which reduces x.

Proof. One can prove the lemma first for normal operator by using
the spectral theorem, noticing that any range space of a spectral proje­
ction belongs to A. Then apply this to the positive part of the polar
decomposition of an arbitrary xEA (cf. p.63 Lemma 1.1 [2J and a
remark preceeding to it).

LEMMA 4. Let xEA and let e>O. Suppose K is a closed subspace of
H such that KEA, IIxfll<ellfll for all fEK with f~O, and suppose
L is a closed subspace of H such that LEA such that Ilxfll:2ellfll for
all f E V-. Then rank K S rank L and rank V- S rank K \ where rank
K denote the relative rank of the projection in A, whose range is K.
(Similarly, rank L, rank V-, ...etc will be understood from now on) [7].

Proof. Let p, q denote respectively the projections in A whose range
are L, K. If fEK, f~O, then Ilxfll<ellfll and hencef6;:V-. It follows
that K nL.L= {O}. Since the range projection of pq is p -p/\ (l-q),
where q is the range of K (p.119, Proposition 2.5.14 [4J), we see
that rank (pq) =rank (qp) (p.94, Theorem 4.3 [10J) =rank (q-q/\
(I-P)), since the range projection of qp is q-q/\(l-p). But q/\
(l-p) =0 since q/\ (1-p) is the projection whose range is K nL.L (=
{O}). Thus rank (pq) = rank q. It follows that rank K=rank q=rank
(pq) :5: rank p =rank L.

Similarly let r, s denote respectively the projections in A whose ranges
are K.L and L.L. By the analagous argument as above we can easily
prove that rank L.L :5: rank K .L.

REMARK 5. The subspace given in Lemma 3 is not unique. However
it is an immediate result of Lemma 4 with K=L that all the subspaces
satisfying the conditions of Lemma 3 have the same relative rank when­
ever anyone of them has an infinite relative rank and that they have
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all :finite relative rank whenever any ope of them has a finite relative
rank (cf. p. 107, Definition 2 [7J). For the first case we put (jr.-(x) to
be the common relative rank of all subspaces K satisfying the condition
of Lemma 3, and for the second case we put o.(x) =0.

DEFINITION 6. We define the relative approximate nullity o(x) of
xEA to be

o(x) =min a.(x).
'>0

From here on, a will be an infinite cardinal with a~h.

DEFINITION 7. A linear subspace K of H with KEA is called relati­
vely a-closed if there is a closed subspace L of H with LEA such that
Le K and such that rank (R n£1-) <a, where K denote the norm clo­
sure of K.

LEMMA 8. If K and L are linear subspaces of Hand K is closed
while rank(L)<a, with K, LEA, then K+L is relatively a-closed.

Proof. K+Le (K+L)-, K+Le (K+L)-, (K+L)-c (K+L)-,
consequently, (K+L)-=(K+L)-. Thus (K+L)-EA, since K, LEA
and (K+L)-=KvLEA (p.119, Proposition 2.5.14). Now KcK+L
and rank«K+L)-I\K.l) =rank«K+L)-I\K.l) = rank«KVL) I\K.l) =
rank (L-LI\K) (p.94, Corollary 4.4 [10J the parallelogram rule)::;;
rank (L) <a. By Definition 7, we see that K +L is relatively a-closed.

LEMMA 9. Let x E A be an operator whose restriction K ( E A) is one­
to-one. Let M be a linear subspace of K such that MEA and that
.'l: (M) is a closed subspace of H. Then

rank M.l ~ rank[x(M)J.l.

Proof. We note that [x(M)J-EA. The rest of the proof is similar
to that of Lemma 4 and is omitted.

The proof of the next theorem can be done if we immitate the proof
of Theorem 2. 6 [2J p. 64. There Lemmas 1. 1, 1. 2, 2. 4 and Theorem
o in [2J were employed. In our situation we can apply Lemmas 3, 4, 8
in our article and Theorem 1 (p.no [7J). We omit the tedious ex­
ecution of the proof.

THEOREM 10. The following five conditions are equivalent for xEA.
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( i) X is left invertible in A modulo la.
(ii) qa(X) is left invertible in A/Ja
(iii) x is bounded below on some closed subspace K belonging to A,

with rank (K.L) <a.
(iv) o(x)<a. (v) rank(x)<a and x(H) is relatively a-closed.

DEFINITION 11. :r( EA) is called a relatively a-Fredholm operator if
rank (x) <a, rank (H8X(H)-) <a and x(H) is relatively a-closed.

THEOREM 12 (A general Atkinson's theorem). Let xEA. The follo­
wing are equivalent.
( i) x is a relatively a-Fredholm operator.
(ii) .7: is an invertible element in A modulo la.
(iii) qa(x) is an invertible element in AIJa.

Proof. This is proved in a similar way as that for Theorem 2. 8 [2J
p. 66. We apply Theorem 10 just as they did (Theorem 2.6 [2J p. 64)
to prove Theorem 2. 8 [2J.

DEFINITION 13. Let :rEA. The relative approximate point spectrum
of x, of weight a, denoted /ra(.7:), is the set of all complex numbers
A such that o(X-AI) ~a. The relative compression spectrum of x, of
weight a, denoted Ta (x) , is the set of all complex numbers A such that
rank (H8[(X-AI) (H)J-) ~a. The relative spectrum of x, of weight a,
denoted lTaCT) is defined by lTa(x) =/ra(x) UTa (x).

In what follows, we list a series of results analogous to those in [2J,
starting p. 67 in there. We shall omit the obvious proofs.

THEOREM 14. Let :rEA and h=rank(I) , where I is the identity op­
erator in A. Then the following conditions are equivalent.
(i) AE/raCx)
(ii) qa(X) -Aqa(I) is not left invertible in A/Ja·
(iii) Every closed subspace K of H, with KEA, on which x-AI is

bounded below, has relati'l'e codimension~ a.
(iv) .re-A.! is not left invertible in A modulo la.
(v) Either A is an eigenvalue of .7: of relative multiplicity at least

a (i. e., rank (null space C'[-A1) ~a), or (.re-AI) CH) is not re­
latively a-closed.

COROLLARY 15. If .1.'EJa, then Ira (.r) = {O}.
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THEOREM 16. Let xEA, h=rank(I). The following are equivalent.
(i) AElTa(x).
(ii) qa(X) -Aqa(I) is not invertible in A/Ja.
(iii) x- AI is not invertible in A modulo la'
(iv) Either A is an eigenvalue of x of relative multiplicity at least a,

or rank (H8[(x-AI) (H)J-) :2:a, or (x-AI) (H) is not relatively
a-closed.

COROLLARY 17. da(X) is precisely the ordinary spectrum of qa(X) in
A/Ja. Hence da(X) is nonempty and compact.

THEOREM 18. Let xEA (No:S:aS;h, as always). Then 1t'a(x) contains
the boundary of da(X).

Let x be a normal operator in A (C L (H) ) . By a version 0 f the sp­
ectral theorem (cf. Section 97 of [3J and Section X.5 of [lJ), there
is an extended real valued positive measure /-l defined on a IT-algebra on
X and a unitary operator U: H~ L2(X, /-l) such that UxU* is the
multiplication operator acting on L2 (X, /-l) defined by a suitable essentially
bounded measurable function if>.

THEOREM 19. Let R y= U* {jEL2(X, /-l) : f vanishes off if>-l(Y)}.
Then AEda(X) if and only if rank (py) :2: a for every measurable neig­
hborhood Y of A where py(EA) is the projection whose range is R y.

LEMMA 20. If S is a compact subset in the plane and rank(ps) ~a
then 1t'a(x) nS~rjJ.

THEOREM 21. Let x be a normal operator in A. Then xEJa if and
only if da(X) = {O}.

THEOREM 22. Let x EA. Then
(i) 1t'a(x) =Jt'a(x+y), for any yEJa·
(ii) da(X) =da(x+y), for any yEJa·

THEOREM 23. Let x be a normal operator in A. Then there is a nor­
mal operator yEJa such that y commutes with x and

d(X+y) =l1a(x) ,

where IT (.) denote the usual spectrum of (.) ((.) EL(H».

COROLLARY 24. If x is a normal operator in A, then
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THEOREM 25. Let yEA. Then yEJa if and only if (Ja(x) =(Ja(x+y)
for all .'rEA.

Recall that an infinite cardinal a is called ~o-irregular if it is the
sum of countably many cardinals stricly smaller than a. A cardinal wh­
ich is not ~o-irregular is said to be ~ o-regular (p. 72 [2J).

DEFINITION 26. An operator yEA will be called relatively a-Hilbert-
M

Schmidt operator if H= ~ ttJH j, HjEA, where rank([y(Hj)J-)<a
ic:;-l..

for all i=1.2, ... , and ~llyIHjI12<oo.
i::-}

THEOREM 27. Let h (=rank 1) be an ~o-irrdgular cardinal such that
h>~o. Then every normal operator .'r(EA) can be written .'r=d+y,
where d is a diagonal operator and y is a relatively h-Hilbert-Schmidt
operator (and hence y EJh).

THEOREM 28. Let h be an 'No-irregular cardinal with h>'No Then
any two normal operator .'r and z in A are unitarily equivalent modulo

.Jh•

PROPOSITION 29. Let .'r( EA) be a selfcommutator. Then O"h(X) cont­
aines at least one nonnegative real number and at least one nonpositive
real number.

3. The characterization of the selfcommutators in A.

LEMMA 30. Let x be a normal operator in A and h= rank (l), where
I is the identity operator in A. Then x may be decomposed, .'r=.'rl ttJ .'r2,
where each Xj acts on closed subspace H j with HjEA such that the ide­
ntity operator I j on H j has the relative rank h with respect to A j (Here
Ai denotes the reduced von Neumann algebra with respect to H;EA),
such that

Proof. This can be proven by the multiplcation operator version of
the spectral theorem. We omit the detail.



80 Sa Ge Lee and Sung le Cho

LEMMA 31. Let .'1:: be a normal element in A. Let AEO"h(X). Then x
00

can. be written as x=·1:: EB Xn such that each Xn.-:acts 'on a closed sub-
n~O

space Hi with HiEA, rank (Ri) =h, and Ilxn-.:l11 s2-nllx-AII, for all
n=O, 1,2, .....

LEMMA 32. Suppose x is a hermitian element in A of the form x=
00

1:: EB Xi such that each Xi acts on.a closed subspace Hi with Hi EA,
i~O' . - --~.

;a~k(R5=h, for all i=O, 1, 2, .... We thus can regared each Xi acts
on H-itselj.· Define the operators Ym Zn on H, for n=O, 1,2, ... , by

n n

Yn= L: X2i and Zn= - 1:: X2i+l·
;~O j~O

If there is bound r such that· IIYnll<r and Ilznll<r for all n=O, 1, 2, ...
then x is a selfcommutator in A.

00

Proof. Define p on H by p= 1:: EB Pi, where
;~o

h=O, 'P2i~Yi' i=0,1,2,3, ... ,

P2i+1 =Zi-l' i=1,2,3, ....

operators
is that p
But this

-
q2i+l =Zi, i=O, 1, 2, .... Then p and q are bounded hermitian
i~A. In fact lip 11 Sr and jlqll Sr. What it re~ains to verify
and q are unitarily equivalent via a unitary element u in A.
will be clearified .by the .next. lemma, whose is omitted.

00

similarly, define q= 1:: EB qi where qo=O, q2i=Yi-h i=l, 2,3, ... , and
i=O

LEMMA 33. Let yE.fl and {en} :~l be an orthogonal family of proje-
00

ctions in A such that L: en=I with respect to the strong operator topo-
n=l

log:y. Assume that each, Hi-ei(R) reduces y. We put YiylHi. Let 0-

be a Permutation of {l, 2, 3, ~ ..}, that is, it is a one.-to-one function. of
- 00

the set of all natural numbers. Let us consider Yq= L: EB yq(i). Here,: Yq(i}
;=1

is defined as the operator_~tin[{ qnJL(i), f§i.ven_by UqCi)YiU;(~j, where
UqCi)=VqCi) IH j, Vq(j) EA, VqCi)vq(i)*=eq(;), Vq(j)*Vq(;)=ei' Define u : H

~-H by ul Hi-:-uq(i); ·i=1; 2;3, .. ,. .Then· u' isa unitary operator on

H such that uEA and uyu*=y~-:
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PROPOSITION 34. If~:Lis altermitian_operator. i.n:A~ and O-Etlh(X) ,
then i is a id/commutator;

Proof. Decompo~e x accordl:ng to Lemma 31 and- then apply· Lemma
32.

COROLLARY 35. If x( EA) is a hemitian operator with rank (null
space of x) ?::.h, then x is a selfcommutator.

COROLLARY 36. If x( EA) is hemitian operator and xEJh, then it
is a selfcommutator in A.

PROPOSITION 37. Let x( EA) be a hermitian operator. If Ilk (x) has
both a positive and a negative real number, then x is a selfcommutator.

Proof. On can argue just as the proof of Proposition 6.8 (p. 78
[2J). We omit the details.

THEOREM 38. Let A be an infinite semifinite factor on a Hitbert sp­
ace and I be the identity operator of A. Let x( EA) a selfadjoint ele­
ment of A. Then x is a selfcommutator in A if and only if (Jh (x)
contains at least one nonnegative and at least one nonpositive real number.

Proof. We simply combine Propositions 29, 34 and 37.
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