SELFCOMMUTATORS IN AN INFINITE SEMIFINITE FACTOR

SA GE LEE AND SUNG JE CHO

1. Introduction.

Let L(H) be the *-algebra of all (bounded linear) operators on a (complex) Hilbert space H of infinite dimension. Let A be a *-subalgebra of L(H). An element $x \in A$ is called a *selfcommutator in* A, if it can be written as the form $x=y^*y-yy^*$ for some $y \in A$.

In the case when H is an infinite dimensional separable Hilbert space, H. Radjavi succeeded to characterize the selfcommutators x in L(H) for the first time, in terms of the spectrum of $\sigma_h(x)$, where $\sigma_h: L(H) \rightarrow L(H)/J_h$ is the quotient mapping and J_h is the largest nontrivial closed (two sided) ideal of L(H) [9]. His characterization of the selfcommutators in L(H) was extended to the case when H is a Hilbert space of arbitrary infinite dimension. Since an infinite type I factor A contained in L(H), A is *-isomorphic onto some L(K), where K is a suitable infinite dimensional Hilbert space, the work [2] is regarded as a characterization of the selfcommutators in an arbitrary I_{∞} -factor A. But there is still another kind of an infinite semifinite factor, namely, II_{∞} -factor.

In this article, we are going to present a unified treatment of the characterization of selfcommutators in A comprising both cases when A is either an I_{∞} -or II_{∞} -factor in L(H), where H is any given Hilbert space of an arbitrarily infinite dimension.

2. Preliminaries.

LEMMA 1. Let x_1 and x_2 be two normal operators in a von Neumann algebra A. Suppose that x_1 and x_2 are similar in A, that is, there is an invertible element $a \in A$ such that $a^{-1}x_1a = x_2$. Then, they are unitarily equivalent in A, namely, there is a unitary element $u \in A$ such that u^*x_1u

Received October 5, 1985.

Supported by the Ministry of Education R.O.K., 1984.

 $=x_2$ (cf. p. 99 [3] Problem 152 and its Corollary)

Proof. Let a=up be the left polar decomposition of a with the partial isometry u and $p=(a*a)^{1/2}$. It is well known that $u \in A$. By duplicating the proof of Corollary (p. 99 [3]) in (p. 306[3]), we see that $u^{-1}x_1u=x_2$ with $u \in A$, as desired.

LEMMA 2. An operator x in von Neumann algebra A is a selfcommutator in A, that is, $x=y^*y-yy^*$ for some $y \in A$, if and only if it is the difference of two positive operators in A which are unitarily equivalent in A (cf. p. 77[2] Proposition 6.2).

Proof. (\rightarrow) By replacing y with $y+\lambda I$ for some real number λ we may assume that y is an invertible element, with the aid of the fact that

$$(y+\lambda I)^*(y+\lambda I) - (y+\lambda I)(y+\lambda I)^*$$

still remains to be x itself. We consider the left polar decomposition y=up of y. Since u is a unitary operator (in A), $y^*y=pu^*up=p^2$, while $yy^*=up^2u^*$. Hence $x=p^2-up^2u^*$ with $p^2 \ge 0$.

(\leftarrow) Let $x=a-uau^*$, where a is a positive operator $a \in A$ and u is a unitary operator in A. We put y=up. Then, clearly, $x=y^*y-yy^*$, with $y\in A$.

From now on we only consider the case when A is an infinite semi-finite factor acting on the Hilbert space H of arbitrary infinite dimension. Let rank (x) denote the relative rank of an element $x \in A$ as defined in (Definition 1 [7] p. 107). For the identity operator $I \in A$, we put h = rank (I). For any cardinal number α with $\aleph_0 \le \alpha \le h$, let J_α be the closed ideal in A by defining as the norm closure of the ideal $I_\alpha = \{x \in A : \text{rank }(x) < \alpha\}$ in A (p. 108, Definition 3 and Proposition 1 [7]). Let $q_\alpha : A \to A/J_\alpha$ be the quotient mapping and for $x \in A$, let $\sigma_\alpha(x)$ denote the spectrum of $q_\alpha(x)$, where $q_\alpha(x)$ is regarded as an element of A/J_α .

In what follows we describe a theory parallel to that developed in [2]. When the projection whose range is a closed subspace K of H belongs to A, we simply denote by $K \in A$ and call K belongs to A, without confusion.

LEMMA 3. Let $x \in A$ and $\varepsilon > 0$. Then there exists a closed subspace K of H, containing the kernal of A such that $K \in A$,

$$||xf|| < \varepsilon ||f||$$
 for all $f \in K$

such that $f \neq 0$, and

$$||xf|| \ge \varepsilon ||f||$$
 for all $f \notin K$.

(In the presence of K with K=0, the first inquality is a vacuous statement.)

Furtheormore, if x is a normal operator (contained in A), there exists such a closed subspace which reduces x.

Proof. One can prove the lemma first for normal operator by using the spectral theorem, noticing that any range space of a spectral projection belongs to A. Then apply this to the positive part of the polar decomposition of an arbitrary $x \in A$ (cf. p. 63 Lemma 1.1 [2] and a remark preceding to it).

LEMMA 4. Let $x \in A$ and let $\varepsilon > 0$. Suppose K is a closed subspace of H such that $K \in A$, $||xf|| < \varepsilon ||f||$ for all $f \in K$ with $f \neq 0$, and suppose L is a closed subspace of H such that $L \in A$ such that $||xf|| \ge \varepsilon ||f||$ for all $f \in L^{\perp}$. Then rank $K \le r$ and L and rank $L^{\perp} \le r$ and L, where rank L denote the relative rank of the projection in L, whose range is L (Similarly, rank L, rank L^{\perp} , ... etc will be understood from now on) [7].

Proof. Let p, q denote respectively the projections in A whose range are L, K. If $f \in K$, $f \neq 0$, then $||xf|| < \varepsilon ||f||$ and hence $f \in L^{\perp}$. It follows that $K \cap L^{\perp} = \{0\}$. Since the range projection of pq is $p-p \wedge (1-q)$, where q is the range of K (p. 119, Proposition 2.5.14 [4]), we see that rank (pq) = rank (qp) (p. 94, Theorem 4.3 [10]) = $\text{rank } (q-q \wedge (1-p))$, since the range projection of qp is $q-q \wedge (1-p)$. But $q \wedge (1-p) = 0$ since $q \wedge (1-p)$ is the projection whose range is $K \cap L^{\perp}$ (= $\{0\}$). Thus rank (pq) = rank q. It follows that $\text{rank } K = \text{rank } q = \text{rank } (pq) \leq \text{rank } p = \text{rank } L$.

Similarly let r, s denote respectively the projections in A whose ranges are K^{\perp} and L^{\perp} . By the analogous argument as above we can easily prove that rank $L^{\perp} \leq \operatorname{rank} K^{\perp}$.

REMARK 5. The subspace given in Lemma 3 is not unique. However it is an immediate result of Lemma 4 with K=L that all the subspaces satisfying the conditions of Lemma 3 have the same relative rank whenever any one of them has an infinite relative rank and that they have

all finite relative rank whenever any one of them has a finite relative rank (cf. p. 107, Definition 2 [7]). For the first case we put $\delta_{\varepsilon}(x)$ to be the common relative rank of all subspaces K satisfying the condition of Lemma 3, and for the second case we put $\delta_{\varepsilon}(x) = 0$.

DEFINITION 6. We define the relative approximate nullity $\delta(x)$ of $x \in A$ to be

$$\delta(x) = \min_{\epsilon>0} \delta_{\epsilon}(x).$$

From here on, α will be an infinite cardinal with $\alpha \leq h$.

DEFINITION 7. A linear subspace K of H with $\overline{K} \in A$ is called *relatively* α -closed if there is a closed subspace L of H with $L \in A$ such that $L \subset K$ and such that rank $(\overline{K} \cap L^{\perp}) < \alpha$, where \overline{K} denote the norm closure of K.

LEMMA 8. If K and L are linear subspaces of H and K is closed while $rank(\bar{L}) < \alpha$, with K, $L \in A$, then K+L is relatively α -closed.

Proof. $K+L\subset (K+\bar{L})^-$, $K+\bar{L}\subset (K+L)^-$, $(K+\bar{L})^-\subset (K+L)^-$, consequently, $(K+L)^-=(K+\bar{L})^-$. Thus $(K+L)^-\in A$, since K, $\bar{L}\in A$ and $(K+\bar{L})^-=K^\vee\bar{L}\in A$ (p. 119, Proposition 2. 5. 14). Now $K\subset K+L$ and $\mathrm{rank}((K+L)^-\backslash K^\perp)=\mathrm{rank}((K+\bar{L})^-\backslash K^\perp)=\mathrm{rank}((K^\vee\bar{L})\backslash K^\perp)=\mathrm{rank}(\bar{L}-\bar{L}/K)$ (p. 94, Corollary 4. 4 [10] the parallelogram rule) $\leq \mathrm{rank}(\bar{L}) < \alpha$. By Definition 7, we see that K+L is relatively α -closed.

LEMMA 9. Let $x \in A$ be an operator whose restriction $K(\subseteq A)$ is one-to-one. Let M be a linear subspace of K such that $\overline{M} \in A$ and that x(M) is a closed subspace of H. Then

$$\operatorname{rank} \overline{M}^{\perp} \leq \operatorname{rank}[x(M)]^{\perp}$$
.

Proof. We note that $[x(M)]^- \in A$. The rest of the proof is similar to that of Lemma 4 and is omitted.

The proof of the next theorem can be done if we immitate the proof of Theorem 2.6 [2] p. 64. There Lemmas 1.1, 1.2, 2.4 and Theorem 0 in [2] were employed. In our situation we can apply Lemmas 3, 4, 8 in our article and Theorem 1 (p. 110 [7]). We omit the tedious execution of the proof.

THEOREM 10. The following five conditions are equivalent for $x \in A$.

- (i) x is left invertible in A modulo Ia.
- (ii) $q_{\alpha}(x)$ is left invertible in A/J_{α}
- (iii) x is bounded below on some closed subspace K belonging to A, with rank $(K^{\perp}) < \alpha$.
- (iv) $\delta(x) < \alpha$. (v) rank(x) < α and x(H) is relatively α -closed.

DEFINITION 11. $x \in A$ is called a relatively α -Fredholm operator if $\operatorname{rank}(x) < \alpha$, $\operatorname{rank}(H \ominus X(H)^-) < \alpha$ and x(H) is relatively α -closed.

THEOREM 12 (A general Atkinson's theorem). Let $x \in A$. The following are equivalent.

- (i) x is a relatively α -Fredholm operator.
- (ii) x is an invertible element in A modulo Ia.
- (iii) $q_{\alpha}(x)$ is an invertible element in A/J_{α} .

Proof. This is proved in a similar way as that for Theorem 2.8 [2] p. 66. We apply Theorem 10 just as they did (Theorem 2.6 [2] p. 64) to prove Theorem 2.8 [2].

DEFINITION 13. Let $x \in A$. The relative approximate point spectrum of x, of weight α , denoted $\pi_{\alpha}(x)$, is the set of all complex numbers λ such that $\delta(x-\lambda I) \geq \alpha$. The relative compression spectrum of x, of weight α , denoted $\gamma_{\alpha}(x)$, is the set of all complex numbers λ such that rank $(H \ominus [(x-\lambda I)(H)]^{-}) \geq \alpha$. The relative spectrum of x, of weight α , denoted $\sigma_{\alpha}(x)$ is defined by $\sigma_{\alpha}(x) = \pi_{\alpha}(x) \cup \gamma_{\alpha}(x)$.

In what follows, we list a series of results analogous to those in [2], starting p. 67 in there. We shall omit the obvious proofs.

THEOREM 14. Let $x \in A$ and h = rank(I), where I is the identity operator in A. Then the following conditions are equivalent.

- (i) $\lambda \in \pi_{\alpha}(x)$
- (ii) $q_{\alpha}(x) \lambda q_{\alpha}(I)$ is not left invertible in A/J_{α} .
- (iii) Every closed subspace K of H, with $K \in A$, on which $x-\lambda I$ is bounded below, has relative codimension $\geq \alpha$.
- (iv) $x-\lambda I$ is not left invertible in A modulo I_{α} .
- (v) Either λ is an eigenvalue of x of relative multiplicity at least $\alpha(i.e., \text{ rank (null space } (x-\lambda I) \ge \alpha), \text{ or } (x-\lambda I)$ (H) is not relatively α -closed.

COROLLARY 15. If $x \in J_{\alpha}$, then $\pi_{\alpha}(x) = \{0\}$.

THEOREM 16. Let $x \in A$, $h = \operatorname{rank}(I)$. The following are equivalent.

- (i) $\lambda \in \sigma_{\alpha}(x)$.
- (ii) $q_{\alpha}(x) \lambda q_{\alpha}(I)$ is not invertible in A/J_{α} .
- (iii) $x-\lambda I$ is not invertible in A modulo I_a .
- (iv) Either λ is an eigenvalue of x of relative multiplicity at least α , or rank $(H \ominus [(x-\lambda I)(H)]^-) \ge \alpha$, or $(x-\lambda I)(H)$ is not relatively α -closed.

COROLLARY 17. $\sigma_{\alpha}(x)$ is precisely the ordinary spectrum of $q_{\alpha}(x)$ in A/J_{α} . Hence $\sigma_{\alpha}(x)$ is nonempty and compact.

THEOREM 18. Let $x \in A$ ($\aleph_0 \le \alpha \le h$, as always). Then $\pi_{\alpha}(x)$ contains the boundary of $\sigma_{\alpha}(x)$.

Let x be a normal operator in $A(\subset L(H))$. By a version of the spectral theorem (cf. Section 97 of [3] and Section X.5 of [1]), there is an extended real valued positive measure μ defined on a σ -algebra on X and a unitary operator $U: H \longrightarrow L^2(X, \mu)$ such that UxU^* is the multiplication operator acting on $L^2(X, \mu)$ defined by a suitable essentially bounded measurable function ϕ .

THEOREM 19. Let $R_Y = U^* \{ f \in L^2(X, \mu) : f \text{ vanishes off } \phi^{-1}(Y) \}$. Then $\lambda \in \sigma_{\alpha}(x)$ if and only if $\operatorname{rank}(p_Y) \geq \alpha$ for every measurable neighborhood Y of λ where $p_Y \in A$ is the projection whose range is R_Y .

LEMMA 20. If S is a compact subset in the plane and $\operatorname{rank}(p_S) \ge \alpha$ then $\pi_{\alpha}(x) \cap S \ne \phi$.

THEOREM 21. Let x be a normal operator in A. Then $x \in J_{\alpha}$ if and only if $\sigma_{\alpha}(x) = \{0\}$.

THEOREM 22. Let $x \in A$. Then

- (i) $\pi_{\alpha}(x) = \pi_{\alpha}(x+y)$, for any $y \in J_{\alpha}$.
- (ii) $\sigma_{\alpha}(x) = \sigma_{\alpha}(x+y)$, for any $y \in J_{\alpha}$.

THEOREM 23. Let x be a normal operator in A. Then there is a normal operator $y \in J_{\alpha}$ such that y commutes with x and

$$\sigma(x+y) = \sigma_{\alpha}(x),$$

where $\sigma(\cdot)$ denote the usual spectrum of (\cdot) $((\cdot) \in L(H))$.

COROLLARY 24. If x is a normal operator in A, then

$$\sigma_{\alpha}(x) = \bigcap_{y \in J_{\alpha}} \sigma(x+y).$$

THEOREM 25. Let $y \in A$. Then $y \in J_{\alpha}$ if and only if $\sigma_{\alpha}(x) = \sigma_{\alpha}(x+y)$ for all $x \in A$.

Recall that an infinite cardinal α is called \aleph_0 -irregular if it is the sum of countably many cardinals strictly smaller than α . A cardinal which is not \aleph_0 -irregular is said to be \aleph_0 -regular (p. 72 [2]).

DEFINITION 26. An operator $y \in A$ will be called relatively α -Hilbert-Schmidt operator if $H = \sum_{i=1}^{\infty} \bigoplus H_i$, $H_i \in A$, where rank($[y(H_i)]^-$) $< \alpha$ for all $i = 1, 2, ..., \text{ and } \sum_{i=1}^{\infty} ||y|H_i||^2 < \infty$.

THEOREM 27. Let $h(=\operatorname{rank} I)$ be an \aleph_0 -irrdgular cardinal such that $h > \aleph_0$. Then every normal operator $x(\in A)$ can be written x=d+y, where d is a diagonal operator and y is a relatively h-Hilbert-Schmidt operator (and hence $y \in J_h$).

THEOREM 28. Let h be an \aleph_0 -irregular cardinal with $h > \aleph_0$ Then any two normal operator x and z in A are unitarily equivalent modulo $\overline{J_h}$.

PROPOSITION 29. Let $x \in A$ be a selfcommutator. Then $\sigma_h(x)$ containes at least one nonnegative real number and at least one nonpositive real number.

3. The characterization of the selfcommutators in A.

LEMMA 30. Let x be a normal operator in A and $h=\operatorname{rank}(I)$, where I is the identity operator in A. Then x may be decomposed, $x=x_1 \oplus x_2$, where each x_i acts on closed subspace H_i with $H_i \in A$ such that the identity operator I_i on H_i has the relative rank h with respect to A_i (Here A_i denotes the reduced von Neumann algebra with respect to $H_i \in A$), such that

$$||x_2-\lambda|| \leq \frac{1}{2}||x_1-\lambda||$$
 and $\lambda \in \sigma_h(x_2)$.

Proof. This can be proven by the multiplication operator version of the spectral theorem. We omit the detail.

LEMMA 31. Let x be a normal element in A. Let $\lambda \in \sigma_h(x)$. Then x can be written as $x = \sum_{n=0}^{\infty} \bigoplus x_n$ such that each x_n acts on a closed subspace H_i with $H_i \in A$, rank $(H_i) = h$, and $||x_n - \lambda|| \le 2^{-n} ||x - \lambda||$, for all $n = 0, 1, 2, \ldots$

LEMMA 32. Suppose x is a hermitian element in A of the form $x = \sum_{i=0}^{\infty} \bigoplus x_i$ such that each x_i acts on a closed subspace H_i with $H_i \subseteq A$, rank $(H_i) = h$, for all $i = 0, 1, 2, \ldots$ We thus can regard each x_i acts on H itself. Define the operators y_n, z_n on H, for $n = 0, 1, 2, \ldots$, by

$$y_n = \sum_{i=0}^n x_{2i}$$
 and $z_n = -\sum_{i=0}^n x_{2i+1}$.

If there is bound r such that $||y_n|| < r$ and $||z_n|| < r$ for all n=0,1,2,... then x is a selfcommutator in A.

Proof. Define p on H by $p = \sum_{i=0}^{\infty} \bigoplus p_i$, where

$$p_1=0$$
, $p_{2i}=y_i$, $i=0,1,2,3,...$, $p_{2i+1}=z_{i-1}$, $i=1,2,3,...$

similarly, define $q = \sum_{i=0}^{\infty} \oplus q_i$ where $q_0 = 0$, $q_{2i} = y_{i-1}$, i = 1, 2, 3, ..., and $q_{2i+1} = z_i$, i = 0, 1, 2, Then p and q are bounded hermitian operators in A. In fact $||p|| \le r$ and $||q|| \le r$. What it remains to verify is that p and q are unitarily equivalent via q unitary element q in q. But this will be clearified by the next lemma, whose is omitted.

LEMMA 33. Let $y \in A$ and $\{e_n\}_{n=1}^{\infty}$ be an orthogonal family of projections in A such that $\sum_{n=1}^{\infty} e_n = I$ with respect to the strong operator topology. Assume that each $H_i = e_i(H)$ reduces y. We put $y_i = y \mid H_i$. Let σ be a permutation of $\{1, 2, 3, ...\}$, that is, it is a one-to-one function of the set of all natural numbers. Let us consider $y_{\sigma} = \sum_{i=1}^{\infty} \bigoplus y_{\sigma(i)}$. Here, $y_{\sigma(i)}$ is defined as the operator acting on $H_{\sigma(i)}$, given by $u_{\sigma(i)}y_iu_{\sigma(i)}^{-1}$, where $u_{\sigma(i)} = v_{\sigma(i)} \mid H_i$, $v_{\sigma(i)} \in A$, $v_{\sigma(i)}v_{\sigma(i)}^* = e_{\sigma(i)}$, $v_{\sigma(i)}^*v_{\sigma(i)} = e_i$. Define u: H $\longrightarrow H$ by $u \mid H_i = u_{\sigma(i)}$, i = 1, 2, 3, Then u is a unitary operator on H such that $u \in A$ and $uyu^* = y_{\sigma}$.

PROPOSITION 34. If x is a hermitian operator in A and $0 \in \sigma_h(x)$, then x is a selfcommutator.

Proof. Decompose x according to Lemma 31 and then apply Lemma 32.

COROLLARY 35. If $x \in A$ is a hemitian operator with rank (null space of $x \ge h$, then x is a selfcommutator.

COROLLARY 36. If $x \in A$ is hemitian operator and $x \in J_h$, then it is a selfcommutator in A.

PROPOSITION 37. Let $x \in A$ be a hermitian operator. If $\sigma_h(x)$ has both a positive and a negative real number, then x is a selfcommutator.

Proof. On can argue just as the proof of Proposition 6.8 (p. 78 [2]). We omit the details.

THEOREM 38. Let A be an infinite semifinite factor on a Hilbert space and I be the identity operator of A. Let $x \in A$ a selfadjoint element of A. Then x is a selfcommutator in A if and only if $\sigma_h(x)$ contains at least one nonnegative and at least one nonpositive real number.

Proof. We simply combine Propositions 29, 34 and 37.

References

- 1. N. Dunford and J. T. Schwartz, *Linear operators*, Part II: Special theory, Intersciences, New York, 1963.
- 2. G. Edgar, J. Ernest and S.G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 61-79, (1971).
- 3. P. Halmos, A Hilbert space problem book, Van Nostrand, New Jersey, 1967.
- 4. R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operators, Vol. I, Academic Press, 1983.
- 5. S.G.Lee, A general Calkin representation, J. Korean Math. Soc. 20 61-65 (1983).
- S.G.Lee, I.H.Lee, S.M.Kim and D.P.Chi, A characterization of closed ideals in L(H), Proc. Coll. Nat. S.N.U. 8 5-8 (1983).
- 7. S.G.Lee, S.M.Kim and D.P.Chi, Closed ideals in a semifinite, infinite von Neumann algebra, arising from relative ranks of its elements, Bull. Korean Math. Soc. 21 107-113 (1984).
- 8. S.G.Lee, S.J.Cho and S.K.Kim, The closed ideals of an infinite semifinite

factor, J. Korean Math. Soc. 22 143-149 (1985).

- 9. H. Radjavi, Structure of A*A-AA*, J. Math. Mech 16 19-26 (1966).
- 10. S. Stralila and L. Zsido, Lectures on von Neumann algebras, Abacus Press,
 Turnbridge Wells, Kent England, 1979.

Seoul National University Seoul 151, Korea