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FINITENESS OF INTEGRAL DIFFERENTIAL FORMS

I. Y. CHung

1. Preliminaries

Let A be a commutative ring with unit, and M an A-module. Supp-
ose that T(M) is a tensor algebra of M and T (M)* the 'dual module
of T(M). Let

K,(MY={f:feTWM)*, fIT(M)=0 for all k+n},

and
K(M)=F, K,(M).

Then K(M) is a submodule of T(M)* and the sum is direct. K(M)
can be made into an algebra by defining multiplication as follows: Let
N and P be A-modules, and N* and P* dual modules. For fe&N*,
g<P*, define f«+g= (NQP)* by(fxg) (a®c)=f(a)g (), a=N, beP.
To define a multiplication in K(M), let

Tnom* Tn(M)®Tm(M) I Tn+m(M)
be the canonical isomorphism, i.e., a2&Qy—zy, z€T,(M), yeT,

(M). Let 9, n=7unm % and 7, ,* be the dual homomorphism. For f,
g€ K(M), we define a product by

fgzg}nﬂn,m*((fojn) * (g°jm)) P nims

where j,: T,(M) —> T(M), jn: T,(M) —> T(M) are natural in-
jections and p,ip 1 T(M) —— Thipn (M) is the (n-+m) th projection.
K(M) is called the algebra of multilinear forms on M.

Let R be an integral domain, K a field containing R. Dg,p will
denote the K-module of all R-derivations D : K —— K. The algebra of
multilinear forms on Dk, is ‘called “the algebra of differential forms
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(on K), and will be denoted by D(K/R), and the submodule of ho-
mogeneous elements of degree 2 by Di(K/R). The elements of D(K/R)
are called differential forms (on K). Let d : K —> D{(K/R) be an R-
derivation defined by d(a) (D) =D(a) for DEDg/x(=T1(Dk/z)) and
d(2) | Tp(Dg,p) =0 for n+1. A differential form z&D(K/R) will be
said to be integral if :cez:.S (dS)* for all valuation rings S in K cont-

aining R. Here S(dS)%= {Xsosd;...ds;)s;=8}. Integral differential forms
in Dy(K/R) are called homogeneous differential forms of degree k.

2. Finiteness

In this section, R will denote a Noetherian integrally closed domain;
P=R[z, ..., z,] a polynomial ring over R in zy,...,z,; Ko a field of
quotients of P; and K a finite separable algebraic extension of K, It
is well known that D;(K/R), in this case, is a vector space over K
with {dz,, ..., dz,} as basis, where d : K—> D;(K/R) is an R-deri-
vation as is defined in Section 1; and D(K/R) is isomorphic to a tensor
algebra of D;(K/R). Hence a homogeneous differential form of degree
k is uniquely expressed in the form

x=Za,-d:t,-l...da:,-k, ;€K 1<4y, ..., <.
i

The main result in this section is that the R-module of homogeneous
differential forms of degree % is finitely generated.

Since K is a finite separable algebraic extension of K, let K=K,(a)
and f(X)=X»+g, X" 14---+a,, a;<K,, be the minimal polynomial
of a. Suppose that Sy is a discrete rank one valuation ring in K, cont-
aining P, and let £ be the set of all valuation rings in K which are
extensions of §,. S, will denote the integral closure of S, in K.

LEMMA 1. If a<S,,
(f (a))3#+1 (SQﬂS dS)kH c Z{Sofa]dxil. wdxiy

where 1 <4y, ..., i3 <n.

Proof. a<S, implies that f(X) €Sp[X]. Since f(a)=0, and g;ES,
which is a localization of P,

0=d(f(@) =F' (@) da-+F avid(a),
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where a™id (d,’) EZ";S‘O d$,'.
It follows that

) N (a)daeg:l Sodz;.
It is well known that (c.f. [3])

(2 (@8, 8olal
Hence, for any b€ S,

d(f"(@)b) €d (Sola]) & 5, Solalda;+Solalda
On the other hand,
d(f'(@)b)=f'(x)db+bd (f' (),

where bd(f'(a)) € ggodx,--%-goda.
Hence, f’ (a)dbé iigodx,--l—goda.
By using (2), it follows that

(f' @)%aBeC 35 SolaldzitSolalda.
Also,
(f" (@) (@So)tc X Solaldz,...dz;(da)t—,
and by using (1),
f (@) (dSy)tc Z Solaldz;,...dz;,.
It is will known that § is a localization of S), and therefore,
SdSc8ds,
Hence, .
(7 @)*() S@HH=(F @)*() S@)H
c Z‘: ggﬂ S)dz;,...dzx;,
= Z'} Sodz;y...dz;;

By multiplying f/(a) and using (2) again,
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(F@)*1(N SES)H) & X So[aldiy..-dziy

LEMMA 2. Let I, be the R—module of integral differential forms degree
k, and P the integral closure of P in K. If a<P,

(f(@)¥*1,C 3, Plalds;,...dz;,.

Proof. Let By be the set of all discrete rank one valuation rings con-
taining P, and & the set of all extension valuation rings of members of
&y in K. Since P is Noetherian integrally closed domain, P=S ﬂgSo,

s

and it follows that

(7 @)FILE (F @)F(, SES))
c 2 N Slaldz;,...dz;, (by lemma 1)

i Sos&o
= Z P[a]dxil...dx,-k.
1
LEMMA 3. Unrder the same assumption as lemma 7, in fact, there exists
a natural number r such that

(7 (@))¥* 1S 3 Mdx;,...dxy,

where M= 2, Rx5t...2, 25 +1.
s;<r

Proof. Consider the subring P;=R[z;", x,...,2,] of Ky. Let S; be
the localization of P, at the prime ideal (z;7!) of P;. Put y;==z;7! and
y;=x; for i=2, ..., n. Then Kj is the field of quotients of P;=R[y,

vy ]
Let a;=z;"*a for some positive integer %, and as before, let

f(X)=Xmta; Xm14eeta,, 8, €Ky,
be the minimal polynomial of a over K;. Then
0=f(a)=x""g (@),

where g(X)=Xn+ayz; P Xm 14 cobg; Xy HXm—it oo g,z hm,
Actually, g is the minimal polynomial of @; over Ky, and K=Kg(ay).
Moreover, we can put A sufficiently large so that all coefficients a;z;7%,
i=1,...,m, of g are contained in S;. Then a;&S5;. Let & be the set
of all extensions of members of S; in K. By using lemma 1,

1 (g’ (ay) )3+t (SQQIS @8)H c ; Silarldy;,...dys,



Finiteness of integral differential forms : yg!
c Z.: Sila 1 (—xy D) %d ;... dxyy,

(where ¢; is the number of y, among y;,...5;,)
c 2;. Si[a]dz;,...dz;,

since S;[ay](z;72):c8,0a].

We have,
(F @)HLE (F @)H1( N 5@8)H
= g PA-DGETD (gl(al))3k+1(sgqls(ds)k)
x hOn-DEETD Z‘: Silaldz;,...dz;, by (1).
Let r;=h(m—1) (3&+1). Then
2 (f (a))*nc Z". S [aldz;,...dz;,.
On the other hand, by lemma 2,
3) (f' (@))* U c Z Rlzy, .o, Tpy aldz;y...dx;y
Combining (2) and (3), we obtain
@ (f'@)*LE T T Rlas, ..., 2 alatiday...dzyy,

Similarly, it can be shown that for each j=2,...,n, there exists r; such
that

(5) (f, (a))3k+llk§ Z s 4:-' R[xh vees iy uey mnz]mja‘jdmil"""da’ik’
i j fj

where Z; denotes the omission of z;.
Also, since a is algebraic over K, and a€P,

R[:L‘l, ooy Lyy a] = Z R[.’L‘l, ceey .’L‘,,:la‘n+1

5u+15degf’
Hence,
(6) (f’ (Q))3k+llkg 2 P R[-Tls sessy .’E,,]a"nﬂd.'t,'l...“'d.'l','b.

Spp15deg

Let r=max {ry, ..., 72 degf}. Then it follows from (4), (5), and (6)
that

(f'(a))3k+11k§ Z Md.’l?,'l...dit,'k

TUEOREM 1. Let R be an integrally closed Noetherian domain, and K
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a finitely and separably generated extension field over the field of quo-
tients of R. Then the module of homogencous integral differential forms
on K of degree n is a finitely generated R-module.

Proof. Since K is finitely and separably generated over the field of
quotients of R, there exist y,...,2,, a =K such that P=R[zy, ..., 2,],
K=K,(a) where K, is the field of quotients of P, and a is separable
algebraic over K,. Without loss of generality, we can assume that the
minimal polynomial f(X)eP[X]. In this case, a&P, - the integral
closure of P in K. We have all assumptions for lemma 2, and hence by
lemma 3,

L 2 M(f (@)~ Dy, .. dxy,
Where M=} Rz’ --x, nasn+1.

s;sr
It follows that I is a submodule of a finitely generated R-module.
Since R is Noetherian, I itself is a finitely generated R-module.

COROLLARY 1. Let R be an integrally closed Notherian domain, and
K a finitely and separably generated extension field over the field of
quotients of R. Then the integral closure of R in K is a finitely gene-
rated R-module.

Proof. Integral differential forms of degree zero are elements of K
which are integrally dependent on R. Hence, this is a special case of
THEOREM 1.
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