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COUNTABLE COMPACTNESS, l.s.e. FUNCTIONS,
AND FIXED POINTS

SEHIE PARK*

In our previous works [13,14,15] we showed that certain maximum
principles were formulated equivalently to fixed point results, and ob-
tained their applications. In the present paper, such formulations are
applied to characterize countably compact topological spaces. Consequent-
ly, some new fixed point results are obtained, and some of them include
most of the extensions of the Furi-Vignoli type fixed point theorems on
densifying maps.

Our tool is the following in [14, 15]. We add its simplified proof for
the completeness.

THEOREM 1. Let X be a set, A its nonempty subset, and G(z,y) a
sentence formula for x,vEX. Then the following are equivalent:

(1) There exists an element v < A such that G(v, w) for any w=X\ {v}.

G) If T : A—2X is a multimap such that for any s SA\T(x) there
exists a yEX\ {2} satisfving ~G(x,y), then T has a fized element vE
A, that is, veT ).

(i) If f: A—>X is a map such that for any x €A with x#fx, there
exists a yEX\ {a} satisfying ~G(x,y), then f has a fized element v<E A,
that is, v=fuv.

(iv) If T : A—2X\{¢} is a multimap such that ~G(x,y) holds for
any 2 €A and any y= T (x)\{z}, then T has a stationary element v<
A, that is, {v}=T(v).

(v) If & is a family of maps f : A—X satisfying ~G (z, fx) for all
2EA with x#fx, then F has a common fixed element vEA, that is,
v=fv for all fEF.

Here, ~ denotes the negation.
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Proof. (1)=(ii). Suppose v& T (v). Then there exists a yeX\{v}
satisfying ~G (v, 5) .

(i) = (ii1)." Clear.

(iii) = (iv). Suppose T has no stationary element, that is, 7T (z)\{x}
+¢ for any z€A. Choose a choice function f on {T'(z)\{z} |z A}.
Then £ has no fixed element by its definition. However, for any x €A,
we have z#fx and there exists a y&T (x)\{z} satisfying ~G(z,y).
Therefore, by (iii), f has a fixed element, a contradiction.

(iv)=(v). Define a multimap T : A—=2Xby T(2) : ={fz|fEF} +¢
for all x€A. Since ~G(x, fx) for any €A and any f€d, by (iv),
T has a stationary element v€ A, which is a common fixed element of
&. '

(v)=>(1). Suppose that for any z€ A, there exists a yeX\ {z} satis-
fying ~G(z, y). Choose fz to be one of such y. Then f: A—X has no
fixed element by its definition. However, ~G(x,fx) for all z€A. Let
F={f}. By (v), f has a fixed element, a contradiction.

In [13, 14, 15], Theorem 1 is applied to Ekeland’s variational prin-
ciple, Zorn’s lemma, and other maximum principles.
The following is a simple consequence of Theorem 1:

COROLLARY ([8, 117). Let f be a selfmap of a set X such that the
function xi—d(fx, f2x), 2€X, has a minimum value at some a<X,
where d is a nonnegative real-valued function on XX X. Suppose that,
for all z,yeX with fa+fy, there is amap g . X—fX which commutes
with f and satisfies ' '

d(gz, gy)<d(fz, fy).
Then f has a fized element.

Proof. From the hypothesis, we have

(i) d(fa, f2a) <d(fx, f2x) for any z€X\{a}.
Therefore, by Theorem 1(iii), the conclusion follows. In fact, since
f: fX—X, for any x€X satisfying fz# f2x, there is a gzefX\ {fa}
satisfying

d(gz, gfz)<d(fz, fix).

Hence, by Theorem 1(iii), f has a fixed element. Furthermore, from
the proof of Theorem 1, fa is a fixed element of f.
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A slight generalization of Corollary and its applications can be found
in Jungck [8].
For countably compact spaces, we have the following:

THEOREM 2. Let X be a countably compact space and F: X—R a
real-valued l.s.c. function. Then the following equivalent conditions
hold :

(1) F attains its infimum on X, that is, there exists a vE X such that
F(v) <F(w) for all w+v.

(i) If T : X—2% is a multimap such that for any xEX\T(z), there
exists a yEX satisfying F(x) >F(y), then T has a fixed point.

(i) If f: X—X is a map suck that for any xE A with x+fx, there
exists a yEX satisfying F(x)>F(y), then f has a fized point.

(iv) If T : X-2X\{$} is a multimap such that F(z)>F(y) holds
Sfor any x€X and any yeT(z)\{z}, then T has a stationary point.

(V) If & is a family of selfmaps f of X satisfying F(z) >F(fx)
for all x€X with x+fx, then F has a common fizxed poins.

REMARK. Theorem 2(i) is well-known ([1, 2]), and 2(iii) is due to
C.S. Wong [19] and generalizes results of Edelstein [4] and J. S. W.
Wong [20]. Note also that the hypothesis of 2(iii) simply tells us that
the infimum point of F is fixed under fi

Now, we obtain the following characterizations of countably compact
spaces:

THEOREM 3. Let X be a topological space. Then the following are
equivalent:

(0) X is countably compact.

(1) Every real-valued 1l.s.c. function F on X attains its infimum.

(iii) For any real-valued 1l.s.c. function F on X and any map f: X
— X such that for any X with x=fx there exists a yEX satisfying
F(z)>F(y), f has a fixed point.

REMARK (0)© (i) is due to Blatter [1] and C.S. Wong [18]. By
imitating Theorems 1 and 2, we can add conditions (ii), (iv), and (v)
to Theorem 3. Note that (i)~ (v) are all equivalent by Theorems 1
and 2.

The following is a variation of Theorem 3.
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THEOREM 4. Let A be a closed subset of a topological space X. Then
the following are equivalent:

(0) A is countably compact.

(i) For any l.s.c. function F : X-—[0,0) suck that inf F(A)=0,
we have F(v)=0 for some v A.

(iii) For any l.s.c. function F : X—[0, ) such that inf F(A)=0,
and for any map f : A—X such that x+fx implies the existence of a
yeX with F(x)>F(y), f has a fixed point.

REMARK. (0)< (i) is due to C.S,Wong [19]. We can also have
equivalent formulations (ii), (iv), and (v).

Theorems 3 and 4 can be applied to a compact L-space since every
real-valued 1.s.c. function defined on such L-space attains its infimum
[9]. Therefore, the following fixed point theorem follows:

THEOREM 5(iii). Let (X,—) be a compact L-space, f : X—X, and
d : XX X0, ) such that the function z\—d(z, fz), z€X, is L.s.c.
If for any x€X with x+fz, there exists a y& X\ {z} such that

d(y, fy)<d(z, fz),
then f has a fixed point.

REMARK. Theorem 5(i), (i), (iv), and (v) can be stated. Note that
Theorem 5(iii) is essentially due to Kasahara [9]. A number of conse-
quences and variations of Theorem 5(iii) are given in [9]. For exam-
ple, in case where y=fz in Theorem 5(iii), we have a generalization
of Edelstein’s theorem [4].

An application of Theorem 5(iii) is the following Furi-Vignoli type
fixed point theorem:

COROLLARY. Let (X,d) be a complete metric space and F a real-val-
ued l.s.c. function defined on X XX. Let f be a continuous densifying
selfmap of X such that for any xEX there exists a positive integer n(x)
such that if x+fzx then

F(frz, fr*12)<F(z, fx)

holds. If the orbit O(x)= {fiz|icw} of an xEX is bounded, then f
has a fixed point.

Proof. Asin [6], O(z) is compact. Note that yI—>F (y, f), y0(a),
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is l.s.c. Therefore, Corollary follows from Theorem 5(iii).

REMARK. Most of the Furi-Vignoli type fixed point theorems appeared
in Furi-Vignoli [5], Dane$ [3], Iséki [6, 7], Khan-Singh [10], Park
[12], Singh-Zorzitto [16], and Thomas [17] are consequences of Theo-
rem 5(iii) and Corollary.
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