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ON CLASSES OF MORPBISMS CLOSED UNDER LIMITS

GEUN BIN IM AND G. M. KELLY

1. Introdaction

When we say below that a full subcategory <? of a category tJ€ is
closed under limits we mean that, whenever a functor F : !l<,-+CC is such
that the composite tf<,-+<?-+tJ€ admits a limit (ag: A-+FK) in tJ€, then
the object A = lim F itself lies in ~; so that <? is necessarily a replete
full subcategory of tJ€.

It should cause no confusion if we use the phrase "closed under limits"
in another but related way. We say that a class Jt of morphisms in a
category s/ is closed under .limits if, whenever F, G : tf<,-+s/ are functors
that admit limits, and whenever 1} : F --+G is a natural transformation
each of whose components 1}K: FK-+GK lies in Jt, then the induced
morphism lim 1} : lim F-+lim G also lies in JI. If we also use JI to
denote that full subcategory of s/2 (the category of morphisms in s/ and
commutative squares) whose objects are the elements of Jt, then to say
that Jt is closed under limits in s/ is to say that the full subcategory JI
is closed in s/2, in the sense of the preceding paragraph, not in general
under all limits, but under all pointwise limits-which are the only ones
of interest in a functor category. This is of course a fortiori the case
when the subcategory Jt is replete and reflective in s/2.

More generally, we may speak similarly of the class JI as being
closed, not under all limits, but under some class of limits, such as small
ones, or finite ones, and so on. This leads us to warn against a danger
of misunderstanding. Sometimes we wish to say that every pullback in
s/ of a morphism in Jt itself lies in Jt; we can express this property by
saying that Jt is stable under pullbacks; but we cannot, like some auth.

The first author acknowledges the support of a grant from the Republic of Korea which
permitted a year-long visit to Sydney in 1983/84, and the second author acknowledges the
support of the Australian Research Grants Scheme.

Received February 25. 1985.

- 1 -



2 Geun BinJrn and G. M.. Kelly

M 5.
M 6.
M 7.

ors, express it by saying that "vii is closed under pulIbacks"-since, lor
us, this last has quite a different meaning.

The aim of the' present article is to observe that any class./l of mor
phisms which contains the t"dentities and is closed under limits necess
arily enjoys a large number of other closure properties. This observation
seems to be new; for many authors, even recent ones, and even those
who have explicitly noted the closedness under limits of their class vii,
have provided independent proofs of a variety of these other-. closure
properties, which are in fact consequences. See for example Kelly [4J,
Section 3 of Ringel [7J, Freyd-Kelly [2J, Bousfield [lJ, MacDonald
Tholen [6J, and Tholen [8J, among others. The last two authors have
in fact shown some of these further closure properties to follow from
the stronger hypothesis that vii, besides containing the identities, is re
plete and reflective ~n ~2. _~t s4quld be pointe<i out that. not _even this
stronger hypothesis implies that.fl is closed under composition. _ ..

On the case where vii is reflective in .yf2, and on the case where Jt
is closed under composition, we -have not very much to add to the res
ults in the articles of MacDonald and Tholen above. Not to say some
thing on these, however, would leave the reader without a clear view
of the situation. Accordingly we take the opportunity, in the final two
sections below, to include some comments on these cases which go a little
beyond those of these authors, as well as making explicit some ideas
that are only implicit in their articles, or are divided between their two
articles and not wholly contained in either.

2. Some consequences of closedness under limits and identities

We give some names to certain closure properties of a class vii of
morphisms of .yf.

M 1. vii contains all identities.
M 2. vii is closed under limits.
M 3. Any retract in .yf2 of an ./I is an vii.
M 4. Any isomorph in.yf2 of an vii is an vii; equivalently,./I is replete

in .yf2, or umvEvII whenever mE../t and u,v are invertible.
If jrE./I and r is a retraction, then jEvII.
vii contains all the isomorphisms.
If jmgE,vIt, jmEvII, and mevll, then mgEJt:
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M 8. If fgEvII and fEvII, then gEvII.
M 9. If mEvII, gEvII, and m is a coretraction, then mgEvII.
M10. Let IX have a terminal object 1, and write tK: K~l for the

unique map. If F : IX~.SIf has a limit (aK: A~FK), and if
FtKEvII for each K, then aKEvII for each K.

MU. If a family (mi: Bi~C)jel with each miE vii admits a fibred
product

(2.1)

then hEvII and each gjEvII.
M12. If, in a fibred product (2.1) ,we have mj Evil for every i ex

cept for one value i=OEI, then goEvII.
M13. Every pullback of an J{ is an vii.
M14. If fgEvII and f is monomorphic, then gEJ{.

We begin with some simple observations.

LEMMA 2.1. M3 contains M4 and M5 as special cases, while either
M4 or M5 implies M6 in the presence of M!.

Proof. The only non-trivial observation needed is that, in the circum
stances of M5, if ri=1, the equation

1i r
--~----->

fl Ifr If
1 1 1
--~--~

1 1

exhibits f as a retract in .SIf2 of fr.

LEMMA 2. 2. M7 contains M8 and M9 as special cases in the presence
of M!.

Proof. For M8, take m=1 in M7. For M9, so choose f in M7 that
fm=1.

LEMMA 2. 3. MU is a special case of MlO.
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LEMMA 2.4. M13 is the spectal case 1=2 of M12, while M14 is a
special case of M13.

Proof. For the latter statement, observe that

g
---+

1

fg

is a pullback if f is monomorphic.

THEOREM 2.5. M2, even stated for finite limits only, implies M3
and M7;while Ml and M2 together imply MIO and M12 (with M2 be
ing required only for small limits, or only for finite ones, if the cate
gory IX or the set 1 is small or finite). Hence Ml and M2 together im
ply M3-M14.

Proof. In the case of M3 we are contemplating the situation

lO ro
---+---+

film If
111
---+---+

it rl

where roio=l, r1i1=1, and mEvII. Writing i for the map (io, i1) of
si'/, and so on, we have in si'/, the pointwise equalizer

i ~
f-->m-->m,

1

fm

m
fmg,

so that fEvII by M2. For M7 we consider a diagram
A gY I----=---- EJ'

4 , ,~
" g ~W//l

\

m
g

\'
1)_ 1

j /'; -\~/)
l~____ ~

1 ---c/
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since the top and bottom squares are pullbacks, M2 gives mgE .At'£rom
the. hypotheses of M7. Turning to MlO, we consider the functor .d (Fl) :
/.X-+sI constant at Fl; _since /.X is connected, its limit is Fl, the limit
cone having generators 1 : F1-+F1. The FtK are the components of a
natural transformation 1J : F-+.d(Fl) , with each 1JK in.At' by hypothesis.
Clearly Hm 1J : A -+F1 is al; so that al E.At' by M2. Since al=FtK . aK,
it follows from M8 that aKE.At'. Passing finally to M12, we consider

where, for i*O, D;=C, k;=m;, t;=1, and $;=mo;while Do=Bo, ko=
1, to=mo, and $(J=l. Since the bottom like the top is a fibted product,
M1 and M2 give goE.At'.

3. Closure under limits when si admits puIIbaeks

It is instructive to observe that, when si admits pullbacks and .At'
contains the identities, there is an alternative way of expressing the closed·
ness of JI under limits, in terms of the categories si/A of objects over
A for AEsI.

We consider limits in si/A. For any /.X we write .dA : /.X-+sI for the
functor constant at A, and we write /.X+ for the category obtained from
/.X by adding a new terminal object 1. To give a functor ~ : /.X-+sI / A is
equally to give a functor H: /X-+sI and a natural transformation A : H-+
L1A, which in turn is equally to give a functor ~+ : /.X+-+sI with ~+(l)

=A. To give a (projective) cone over ~ with vertex n: B-+A is to
give a cone a : L1B-+H in si satisfying

a
LlB _H

~l' (3.1)
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which is equally to give a cone (a, n) : LlB-'t(j)+ in si. It is clear that:

LEMMA 3. 1. a exhibits n as the limit of (j)= (H, A) : /X,-'tsl/ A if and
only if (a, n) exhibits B as the limit of (j)+ : /J(,+-'tsl.

Suppose now that si admits pullbacks, and consider a natural trans
formation 1) : F-'tG : /X,-'tsl, where F and G admit limits p : LlB-'tF and
0' : LlA-'tG, while 1) induces n=lim 1) : B-'tA. Form in the functor cate
gory [a, si] the pullback H of 1) and 0', and let a be the unique map
rendering commutative

(3.2)
M-----------+o.G

(1

The reader will easily verify that:

LEMMA 3.2. a expresses n as the limit of (j)= (H, A) : /X,-'tsl / A.

The result we desire is:

PROPOSITION 3. 3. Let si admit pullbacks and let the class JI of mor
phisms contain the identities. Then JI is closed under limits if and only
if JI is stable under pullbacks and, for each AEsI, the full subcategory
JI / A of si/A, determined by those m : C-'tA with mEJI, is closed under
limits in si/A.

Proof. If JI is closed under limits it is stable under pullbacks by the

M13 part of Theorem 2.5; while if (j)= (H, A) : /x'-'tsl / A takes it values
in JI / A, and has limit n as in (3. 1), we have AEJI (componentwise) ;
whence we deduce nEJI by Lemma 3.1 and the M10 part of Theorem
2.5 applied to (j)+ : /X,+-'tsl. For the converse, if 1)EJI (componentwise)
in (3.2), we have AEJI by the stability hypothesis and then nEJI by
the other hypothesis and Lemma 3. 2.

4. Examples of families of morphisms closed under limits

PROPOSITION 4.1. The monomorpkisms are closed under limits and con
tain the identities; they are also closed under composition.
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Recall from [4J that j : A~B is called a regular monomorphism if it
is the joint equalizer of some family (not necessarily small) of pairs Xj,

Yi : B~Ci' It comes to the same thing to say that j is the joint equali.
zer of the family of all pairs x, Y : B~Cxy satisfying xj=yj. By an
equalizer we mean amorphism j that is the equalizer of a single pair
.T, Y : B~C; thus every equalizer (and so, in particular, every coretrac
tion) is a regular monomorphism. On the other hand every regular mo
nomorphism j is an equalizer if .rI admits pushouts; for then j is the
equalizer of the pair .T, y arising from the pushout of j by itself. As is
well known, regular monomorphisms are not in general closed under
composition.

PROPOSITION 4.2. The regular monomorphisms contain the identities
and are closed under limits.

Proof. Consider the diagram

A a
K

FK
-------+

n InK
.

-------+
B f3

K
GK

where the top and the bottom are limits of F and of G, and the com
ponents 1)K of 1) : F~G are regular monomorphisms. Suppose that 1)K is
the joint equalizer of the family

(x(K,i),y(K,i) : GK~H(K,i))iE!K;

then n is in fact the joint equalizer of the family

x(K, i)
(B -p-~GK ( "): H(K, i)hE/}(' ;E!K'

fJK y K,1

as the reader will easily verify.

Recall from [2J the notion of a prefactorization system. For morph
isms p and j, we write p ~ j if, whenever we have a commutative squ
are ju=vp, there is a unique "diagonal" w satisfying wp=u and jw=
v. For any class,AI of morphisms we write,AI l for {j Jp ~ j for all pE
,AI} and ,AI T forlp Ip ~ j for all j E,AI}. A prefactorization system is a
pair 6, JI of classes of morphisms such that 6 =JI T and JI =C(j l; and
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any class .Af gives rise to such a 'prefactDTIzation system on setting JI=
,A/Jand 6=11=.kll• 'M/my closure pr~pertiescif a class defined by
Jt ...:-,;Y! w~re given in [2J, but it ~as 'Bousn.eld [lJ WhO fi~t Pointed
out that such an Jlis closed. under limits: ..

~ z

\' (4.1)
> R,

There is a g~neralization of this notion due to Tholen; see ·for ins
tance [8J. F~lowing Tholen, define a factorization to be a pair (p, k),
~here p is a family (Pi ~ Xi-)Y)iE[<P) of morphisms and 'k: Y-)Z is a
morphism; the'idea-is.that (p,k) can be seen as a "factorization" of
the famity (kPi: Xi~Z). For a morphism m: A-)B write (p, k) ! m
if, for all Ui, v rendering commutative the exterior of

~ k
, x, -..-----~~",Y -----..,.

u.\ -"-"",~-,,-,,-,,-,,
, -"

'".-.
-",-

.4=---------------~m

there is a unique w as shown rendering the square and the triangles
commutative. If iJ is any class of factorizations, we set iJ I = {m I (p, k)
! m for all (p, k) E iJ}. If we identify a factorization (p, 1y) with the

family ,p = (Pi: X i-)Y), and identify a one-object family with a mor
phism p : X-4 Y,; it is dear that our definition of iJ I contains as a sp
ecial case that of JV I a'bove.

-
The reader will have no difficulty In verifying the following result of

Tholen [8J (see his Proposition 1. 1 on page 66 and Proposition 2. 1 on
page 68) :

PROPOSITION 4.3. For any' class iJ of factorizations, the class JI =iJ I

of morphisms contains the identities and is closed under limits. If every
(p, k) EiJ has k an identity, 1 is also closed under composition. This
last is so in particular if iJ reduces as above to a class JV of morphisms.
. . ,

Recall from [4] that the class. of strong monomorphisms is the inter
section of ,A/ I witht~ 'monomorphisms, whe~e ,A/ is the class of epi
mor-phisms; it is' accordingly closed 'u'nder limits a~d composition,. as ;reIl
ascont~ining the identities~ nn ~his case, _it is shown in [2J th~t JlI
is -alreadycontained in -the monomorphisms"=-it .sf . adriiits' pullbacks -- or
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binary coproduc~; it i~ also clearly so if si admits coequ8.li~rs).
, -,

If we take for iJ the class of all (p, 1y) where p = (Pi : Xi~Y) is a
jointly epimorphic family, we call the intersection of:J! with'the mo
nomorphisms the class of famiiially strong monomoi:pliisrris;' clearly it
too has the closure ..properties above. It is of course contained in the
class of strong monomorphisms: we examine in, the forthcoming [3J
cases where these two classes coincide. For the moment we merelyobs-
erve that: ",. ,

PROPOSITION 4.4. Every regular mono111f)rphjsm is fa1fl:il.ial.~Y str.qng.
Proof. In (4.1) let P= (Pi) be jointly epimOrphic, let !=}Y, and' let

m he a regular~onomorphism. Then zm=ym gives :cvPi=YVP; for each
i, whence :r.v=yv. So v=mw for some unique w, and moreover WPi=
Ui since m is monomorphic.

We give no concrete example here of an ~Jl where the {n,k}EiJ do
not all have k invertible; but Proposition S.7 below shows that any J(

containing the identities and replete and retl~tive in sl2 is JP for a class
iJ of factorizations-indeed of factorizations of single morphisms, rather
than pf fami~. In any reasonable ,.pi, the, tegu~r 1JloIWffi()rphisJns fomi
such a class J( (see Example. 6. 3 ,below), 9ijf 'are not; uSually' .closed
under composition: so that here the (n, k) EiJ do not h!lve k invertiQle.. ." ,.' .. . ~ . '" ,~. '~, '.

'5.' ReflexioDS 'of morphisms: into J(
. ~ ,

PROPOSITION 5.1. Let vii be a class of morphisms in .>I that contains
the identities, identified with d' jull suocategory of .>12• If an object f :
A~B of .>12 admits a reflerion

• ~ 1,
~ : ,(s.:i)
. ,,~. "

'.
.into .J(; ,then z is', invertible.. , "

Proof Su;,ce IBEJ( and (5.1) is the reil~xion" there are ,z, y such
that .
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(5.3)

(5.2)

f
A----B

f 1 \1
1 1
B----B

1

f
A----B

ql IX
C----D

z I m ly
B----B

1

Composing with (x, x) : la-In and using (5. 1) gives

f f f
A----B = A----B - A----B

ql lx I I ql lx
C---D fl 11 C---D

zl m ly 1 1 I m f

B----B B----B m I 11
xl 1 Ix xl 1 Ix I 1
D--.--D D----D D----D .

1 1 1

Now we have Jlx=l by (5.2), while xy=l by (5.3) and the unique
ness clause in the definition of a reflexion.

CoROLLARY 5.2. When Jt, besides containing the identities, is replete
in .sI2, the reflexion into JI of any f : A-B can be taken to be of the
form

f
A------B

ql 1 1

1 1
C------B.

m
(5.4)

REMARK 5.3. For the rest of this section we suppose that JI is a class
of morphisms containing the identities and replete in .912, and we write
6 for the Flass .,lit of morphisms. Departing somewhat from the langu
age of Tholen [8J, we call (q, m) an JI-factorization of f if f=mq
with mEJt and if (q,l) : I-m is, as in (5.4), a reflexion of fEd2

into JI. Such an Jt-factorization of f, if it exists, is of course unique
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up. to the replacement of C by an isomorph. The universal property
asserting that (5. 4) i·~ a reflexion of f into J( can be eXPressed as foH~
ows: f=mq with mEJi, and whenever nu=vf with nEJI, we have
a unique w rendering commutative

f
1 ----. ---b

- -----~(.~ 1/ '
x ~ Y ..

(5.5) .

In other words, f=mq with mEJI and (q, m) 1n for all nEJt. To say
that every f admits an •. I1-factorization, or that .·I1-factorizations e.'rist,
is of course to say that .11 is reflective in s(2. When this is the case,
the result of Proposition 5. 1 is given in MacDonald-Tholen [6J (Prop
osition 1. 3, page 178).

It is not in general the case that the Jl-factorization (q, m) of f has
q E (5; we shall see in Proposition 5. 9 below that this is so for all f
precisely when J( is closed under composition. Yet in the other direction
we do have the trivial result:

PROPOSITION 5.4. If f=mq with mE .It and qE{5, then (q, m) is an
J(-factorization of f·

PROPOSITION 5.5. For f : A~B the [ollowing are equivalent:
(i) fEJl;
(ii) f has the ./I-factorization (lA,!);
(iii) f has an J(-factorization (q,m) with q invertible;
(iv) f has an Jt-factorization (q, m) and there exists a t rendering

commutative

;\
(/

.,. C

11

I
In

..
A ..... H.

f
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Proof. Obviously (i) ::} (ii)::} (ill) ::} (iv). Given (iv) , we have corn
mutativity in

A----
g
--_

,I
m

------->-B

1,
c ~ B,

m

whence qt=1 by the uniqueness of w in (5. 5). Thus q is invertible,
and fEvIt.

PROPOSITION 5.6. For f: A-tB the following are equivalent:
(i) fEe,;
(ii) f has the vIt-factorization (f, IB) ;
(iii) f has an vIt-factorization (q, m) with m invertible;
(iv) f has an vIt-factorization (q, m) and there exists an s rendering

commutative

f • BA

'\ \'
c • H

m

Proof. Obviously (i) ::} (ii) ::} (iii)::} (iv). Given (iv) , we have com-
mutativity in

q III
.. HA

,I l'
c .. B,

m

whence snt=l by the uniqueness of w in (5.5). Thus m is invertible;
from which it follows easily that fEG.
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We can now give a "partial converse" to Proposition 4. 3:

13

PROPOSITION 5.7. If.AI is reflective in s/2, then.AI =';;}) where ';;} is
the class of all .AI-factorizations of rrwrphisms.

Proof. We have .Ale';;}) by Remark 5.3. Let fE';;}l and let f have
the .AI-factorization (q, m). Then there is a t rendering commutative

.\ • C ------+J H

11/ I1
.1 -;-- -+~ li,

f

whence fE.AI by Propositon 5.5.

Turning to the case where si admits pullbacks, we prove an analogue
of Proposition 3. 3 :

PROPOSITION 5.8. If f : A-...B admits an .AI-factorization f= (q, m),
then q : f-...m is a reflexion of fEsI IB into.AII B. Conversely, if si ad
mits pullbacks and .AI is stable under pullbacks, and if q : f--'m is a re
flexion of fEs/ IB into .AII B, then (q, m) is an .AI-factorization of f.

Proof. The first assertion is trivial; for if f=nu with nE.AI, the ex
istence of a unique x rendering commutative

/Cl~
,\~/n

x

is a special case of the universal property (5. 5). For the other direction
we consider nE.AI and u, v as in (5.5) with nu=vmq, and construct

q . )~

A~l'~IH
"/ '

X • y

"
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where D is the pullhackof nand v. t is the uniquemorphism with ri=
mq and -st=u, and x is the unique morphism with xq=t and rx=m,
which exists by hypothesis since rEJI. To obtain the universal property
(5.5), it remains to show that any w : C-'»X with wq=u and nw=vm
is in fact sx.· Given such a w there is, since D is the pullback; some
y : C-'»Dwith sy==w and ry=m. Now wq=u gives syq=u, while ryq
=mq; whence, since D is the pullback, yq=t. This, along with ry=
m, gives y=x, so that w=sy=sx.

The following results on the special case where ~II is closed under
composition are contained partly in [6J (Proposition 2.1, page 68) and
partly in [8J (Proposition 1. 2, page 177), and· we do no more than
organize them for the reader's convenience.

_ PRQI'QsrrIQN. 5. 9. . When .!f-ifact0r.izations. exist the following are
equivalent:" -_. -
(i) Every JI-factorization (q,m) has qE€>.
(ii) Every JI-factorization (q, m) with qEJI has q invertible.
(iii) Jt is closed under-composition.

Proof.. (1). implies (ii) since it is trivial (see [2J Proposition 2.1. 2,
page 173) that JI n{3 = JI nJI r consists of isomorphisms. To see that
(ii)iID.plies -(iii) , let (cf, m) be the o:II-factorization of nk where n, kEJI,
and let t be the unique morphisril rendering commutative

n

The M8 part of Theorem 2. 5 giv~ tEJI since n. mEJI, and then
qEJI since t,kEJI. So q is invertible by (ii), whence nk=mqEJI.
To see that (iii) implies (i), suppose that the q of (i) has the JI
factorization (r,n).· Since mnEJI by (iii) , we have an s rendering
commutative
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q m
A .. C t B

'j 1,
IJ >- C t IJ;

III

but now the uniqueness of w in (5. 5) gives ns=l, whence qE6 by
Proposition 5. 6.

Recall from [2J that a factorization system on .;I consists of two classes
€', Ji of morphisms, each containing the identities and closed under com
position, such that e ~ m whenever eE€, and mEJi, and such that
(€', Ji) /aetorizations exist, in the sense that every morphism f admits
a factorization f=me with mEJi and eE€,. Recall further from [2J
that every factorization system (6, Ji) is a prefactorization system, and
that a prefactorization system (6, Ji) is a factorization system precisely
when (6, Ji) factorizations exist.

THEOREM 5.10. Let Ji be any class of morphisms in si, and set €,=
Ji t • Then the following are equivalment.
( i) (6, Ji) is a factorization system.
(ii) Ji is a replete reflective subcategory of sl2 containing the identities

and closed under composition.

Proof. Given (i), Ji=€,l contains the identities, is replete in sl2,

and is closed. under composition, by Proposition 4. 3 and the M4 part
of Theorem 2.5. If f=me with mEJi and eE6, clearly (e, m) is an
Ji-factorization of f, so that Ji is reflective. Given (ii) , Ji is closed
under composition and contains the isomorphisms by hypothesis, while
the same is true of 6=Jit by (the dual of) Proposition 4.3 and the M6
part of Theorem 2.5. Trivially e ~ m whenever eE€, and mEJi since
6=Jit. By Proposition 5.9, the Ji-factorization (q, m) of any mor
phism f has q E 6. Hence (€', Ji) is a factorization system.

6. Examples of refteetive Ji, and remarks

EXAMPLE 6.1. The authors of [6J consider the example where si is
the category of categories and right-adjoint functors, while Ji is the
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class of monadic;: functors. .If t is the monad on B derived from the right
adjoint f : A~B, let Bt be the category of algebras, m: Bt~B the
forgetful functor; -and q-:-A~Bt the comparison functor; then (q, m) is
an Jt-factoriz9-tion of f if A and Bt admit coequalizers. 'If we restrict
.si to consist of cocomplete categories and right adjoints with rank, then
all Jt-factorizations exist. Here Jt is not closed under composition, and
does not consist of monomorphisms.

EXAMPLE 6.2. When Jt, containing the identities and replete in .sI2 ,

does consist of monomorphisms, it is certainly reflective in.sl2 if pull
backs. of ,.4's and arbitrary (even large) intersections of .si'sexist, and
these .ag~ lie inJ{; for by Proposition 5. 8 we have only to' give a
reflexion of f : A~B into ,j{/ B, and we :find this as the intersection
m : C~B of those n : D~B in M through which f factorizes. This is
Theorem 2. 4 of Tholen [8J, who points out that even more is true:
in this case any family Ch: Ai~B) has an ..4'-factor~zation (% m),
the extension of the notion of ..4'-factorization to families being the ob
vious one. When Jt does not consist of monomorphisms, the hypothesis
that arbitrary fibred products of Jt's exist cannot hold: see Section 1. 3
of [5]. For results on the reflectivity of an..4' not consisting of mono
morphisrns, see Tholen [8J.

"EXAMPLE 6.3. In particular, by Proposition 4. 2 and Theorem 2.5,
the class ..4' of regular monomorphismsis reflective in .sI2 if d admits
pullbacks and arbitrary intersections of regular monomorphisms. However
it is not clear that the Jt-factorization (q, m) of amorphism f is then
what was called in t4J (in the dual case). the regular factorization of
f. The latterwas definedas a pair (q,m) with f=;"q such that mis
the joint equalizer of all pairs x, y with xf=yf. The reader will easily
verify (this' is Example 2. 1· of [6J) that a regular factorization 'is always
an ..4'-:-factorization, while an ~-factorization is a regular factorization
if ..sI admits equalizers. But then -we do not, need pullbacks in . .sI: by
[4J (Proposition 4..2 on page 134), if .si admits .equalizers, '. regUlar
factorizations exist if .si admits either arbitrary intersections of regular
monomorphisrns or else pushouts. ' "

, REMARK. 6.4. The most classical examples of a reflective Jt are given
as in Theorem 5. 10 by a factorization system.
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REMARK 6.5. The authors of [6J consider transnnite iteration of 1
factorizations, where 1 contains the identities and is replete and refle
ctive in d 2, but do not go beyond small ordinals. When 1 consists of
monomorphisms [resp. strong monomorphismsJ ~llld d admits all inters
ections of monomorphisms [resp. strong monqmorphisms] w~.can carry
this process to its limit and arrive at a factorization- system. -Beginning
with the 1-factorization f=mq=noqo of f; - we define' inductively a
factorization f=naqa for each ordinal a; if a=;5+1 we take the 1
factorization qfJ=mfJqa of qfJ and set na=nfJmfJ; if a is a limit-ordinal
we set na= n~<anfJ' with the obvious qa' If we suppose every category
to be small with respect to some universe, this process ultimately term
inates; which means that mfJ is invertible for some ;5, and hence by
Proposition 5.6 that qfJEg. By Proposition 4.3 and Theorem 2.5, we
have nfJEgJ. Thus the prefactorization system (g,gJ)=(11,1lt) is
actually a factorization system. When 1 consists of the regular mono
morphisms and d admits equalizers, this gives (see [4J, Proposition
3.9 on page 133) the factorization of f into -~an~ epimorphism~ followed
by a strong monomorphism.
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