產業技術研究(江原大學校 產業技術研究所 論文集) 第6輯(1986)

Research Report, The Institute of Industrial Technology, Kangweon Nat'l Univ., Korea, Vol. 6, 1986.

A note on C-Closed and Compactification

Chun - Ho Han*

C-Closed 와 Compactification에 관하여

한 춘 호'

國文要約

이 論文에서는 net와 連續函數의 族에서 생성된 像에 의한 Compact 空間의 性質을 조사하였다. Compact 空間에 기초를 둔 C - closed, A - net, A - 變換을 사용하여 Haussdorff 空間 혹은 Regular 空間에서의 그들의 性質을 살펴보았다.

I. INTRODUCTION

On this paper, the characterization of a Compact space by the nets and the images induced by any family of continuous function. Using the C-closed, A-transformation based on the Compactification, investigate the their properties on Hausdorff space or Regular space.

II. PRELIMINARY

DEFINITION 1)

Let A be a family of continuous on continuous functions on topological space X. A net $\{X_i\}$ in X will be net an A-net, if $\{f(X_i)\}$ converges for each f in A.

DEFINITION 2)

Let $A = \{f_a \mid \alpha \in \Lambda\}$ be a family of continuous functions f_a on topological space X into Haussdorff space X_a . Let S be the

collection of all A-nets in X. Define δ on S setting that $\{x_i\}$ δ $\{y_i\}$ if and only if $\lim \{f_a(x_i)\} = \lim \{f_a(y_i)\}$ for each f_a in A.

DEFINITION 3)

A-transformation (Y, e) of X if and only if $e: X \rightarrow Y$ and e(x) is the equivalence class in Y containing a net x in X.

DEFINITION 4)

A space X is called C-closed if every countably compact subset of X is closed in X. Equivalently X is C-closed if every non-closed subset A of contains a sequence x_n which has no cluster point in A.

TYCHONOFF THEOREM)

Let $\Pi \alpha \in \Lambda X \alpha$ be the product space of $\{X\alpha \mid \alpha \in \Lambda \}$, A a collection of projection maps of $\Pi \alpha \in \Lambda X \alpha$ onto $X\alpha$. Since every A-net in $\Pi \alpha \in \Lambda X \alpha$ converges in $\Pi \alpha \in \Lambda X \alpha$ is compact if and only if $X\alpha$ is compact for each α in Λ .

^{*} 江原大學校 工科大學 土木工學科 助教授

^{*} Assistant Professor, Dep't of Civil Engineering, Kangweon National University

BANACH-ALAOGLU THEOREM]

Let E be a topological vector space, E^* the continuous dual of E, and $\sigma(E^*, E)$ the weak topology on E^* induced by E. For every neighborhood U of N in E, let U^o be the polar of U in E^* . Then U^o is a closed subset in $(E^*, \sigma(E^*, E))$ satisfying that cl $(x(U^o))$ is compact for each x in E and every E-net $\{y_i\}$ in U^o , where

 $y(x) = \lim \{y_i(x)\}\$ for all x in E.

III. PROPOSITIONS AND THEOREMS

PROPOSITION 1)

 δ is an equivalence relation.

PROPOSITION 2]

Let $Z=S/\delta$ be the collection of all equivalence classed in S. An equivalence class in Z containing an A-net $\{x_i\}$. (It will be denoted by $\{\bar{x}_i\}$.) For each $f\alpha$ on Z by setting that $f\alpha(\{\bar{x}_i\}) = \lim \{f\alpha(\bar{x}_i)\}$. The $A = \{f\alpha \mid \alpha \in \Lambda\}$ separates points of Z; i.e.for any two points z_1, z_2 in Z, there is an $f\alpha$ in A such that $f\alpha(z_1) \neq f\alpha(z_2)$. Each $f\alpha$ will be called the extension of $f\alpha$ to Z.

PROPOSITION 3

Let $A = \{f\alpha \mid \alpha \in \Lambda\}$ be a family of continuous functions $f\alpha$ on X into Hausdorff space $X\alpha$ such that the topology on X is the weak topology induced by A, E, F two subspaces of X such that $E \subset F \subset cl(E)$. (cl(E) is the closure of E). Then the following are equivalent:

- 1) Every A-net in E has cluster point in F
- 2) Every A-net in F converges in F. PROOF:

Let $\{y_i\}$ be an A-net in F. For each y_i , pick a net $\{z_{ij}\}$ in E converging to y_j . for each $f\alpha$ in A, $\{f\alpha(y_i)\}$ converges to a point

 z_{α} and $\lim \{f\alpha(x_{ij})\} = f\alpha(y_i)$, so that for each neighborhood $N\alpha$ of z_{α} , there is an x_{α} in E such that $f_{\alpha}(x_{\alpha}) \in N_{\alpha}$. Thus for any finite subset H of A and $N_H = \{N_{\alpha} \mid N_{\alpha} \text{ is an }$ open neighborhood of z, $\alpha \in H$, there is an x_H in E such that $f_{\alpha}(x_H)$ is in N_{α} for each α in H. Direct $\{(H, t) | H \text{ is a finite}\}$ subset of A, N_a is an open neighborhood of z, $\alpha \in H$ } by setting that $(H_1, t_1) \ge (H_2, t_2)$ if and only if $H_1 \subset H_2$ for each a in H_2 . Then $\{x_H\}$ is an A-net in E. 1) that $\{x_H\}$ has a cluster point x in E Since X is Haussdorff and $\{f_{\mathbf{x}}(x_H)\}$ converges for each α in A, so that $(f_{\alpha}(x_H))$ converges to $f_{\alpha}(x)$ for each α in A. This implies that $\lim \{f_{\alpha}(y_i)\} = f_{\alpha}(x)$ for each α in A. thus $\{y_i\}$ converges to x. 2) implying 1) in obvious.

PROPOSITIONS 4]

Every Haussdorff sequential space is C-closed

PROPOSITIONS 5]

If X is a *Haussdorff* space and every countaly compact subset of X is sequential, then X is C-closed.

PROPOSITION 6)

If a Haussdorff space X admits a continuous one-to-one map into a C-closed space, then X is C-closed.

PROOF]

Let $f: X \to Y$ be a continuous one-to-one map, where Y is C-closed. Let A be a countably compact subset of X. Then f(A) is countably compact subset of Y. Since Y is C-closed, f(A) is closed in Y. Therefore $f^{-1}(f(A)) = A$ is closed in X.

THEOREM 1]

If in a *regular* space X, every point has a C-closed neighborhood, then X is C-closed. PROOF]

Let A be a countably compact subset of X and $x \in \operatorname{cl}(X)$, we have claim that $x \in A$. Let U be an open subset of X such that $x \in U$ and U is C-closed. By regularity, we choose an open set V such that $x \in V$ and $\operatorname{cl}(V) \subset U$. Since $\operatorname{cl}(V) \cap A$ is countably compact subset of U, it is closed in U. But $x \in \operatorname{cl}(\operatorname{cl}(V) \cap A)$. Therefore $x \in A$. This shows that A is closed in X.

THEOREM 2)

Let A be any family of continuous functions on a topological space X, then X is compact if and only if

- 1) f(X) is contained in a compact subset C for each f in A
- 2) every A-net has a cluster point in X. PROOF]
- \circlearrowleft) Let x be an ultranet in X. for each f in A, $\{f(x_i)\}$ is an ultranet in C, hence converges in C; that is, $\{x_i\}$ is an A-net. 2) implies that $\{x_i\}$ has a cluster point x in X. Since $\{x_i\}$ is an ultranet, $\{x_i\}$ converges to x. Thus, X is compact.
 - The converse is easily proved.

COROLLARY]

Let A be a family of continuous functions on X into Hausdorff spaces such that the topology on X is the weak topology induced by A, E, F two subspaces of X such that $E \subset F \subset cl(E)$, then F is compact if and only if

- 1) cl(f(E)) is compact for each f in A
- 2) every A-net in E converges in F.

PROPOSITION 7

e is continuous and e(X) is dense in X PROOF]

If $\{x_i\}$ converges to x, then $\lim \{\bar{f}_{\alpha}(e(x))\} = \{f_{\alpha}(x_i)\} = \bar{f}_{\alpha}(x) = \bar{f}_{\alpha}(e(x))$ for each \bar{f}_{α} in \bar{A} . implying that $\{e(x_i)\}$ converges to e(x). Thus e is continuous. For the density of

e(X) in Y, let $\{\bar{x}_i\}$ be in Y, then $\lim \{f_{\alpha}(e(x_i)) = f(\{\bar{x}_i\})\}$ for each \bar{f}_{α} in \bar{A} , implying that $\{e(x_i)\}$ converges to $\{\bar{x}_i\}$.

COROLLARY)

Let $\{\bar{x}_i\}$ be in Y, then $\{e(x_i)\}$ converges to $\{\bar{x}_i\}$ in Y.

THEOREM 3)

e is an embedding of X as a dence subspace of Z if and only A separates points of X and the topology on X is the weak topology induced by A.

PROOF)

For Z and e, previous defined, e is one-to-one if and only if A separates of X. Since for each x in X, $\bar{f}_{\alpha}(e(x)) = f_{\alpha}(x)$ for each f in A, so that e is an open mapping from X onto e(X) if and only if the topology on X is the weak topology induced by A. Thus PROPOSITION 2) implies this theorem.

PROPOSITION 8]

Every A-net $\{y_i\}$ in Y converges in Y. PROOF)

For each y_i in $\{y_i\}$, let x be an A-net in X belonging to y_i . For each f_α in A, $\{\bar{f}_\alpha(y_i)\}$ converges to a point z and $\lim_{n \to \infty} \{f(x_i)\}$ = $f_\alpha(y_i)$, so that for every open neighborhood N_α of z_α , there is an x_α in X such that $f_\alpha(x_\alpha)$ is in N_α . By the same techniques in the proof of PROPOSITION 1] we can get an A-net $\{x_H\}$ in X such that $\bar{f}_\alpha(\{x_H\})$ = $\lim_{n \to \infty} \{f_\alpha(x_H)\} = z = \lim_{n \to \infty} \{f_\alpha(y_i)\}$. Thus $\{y_i\}$ converges to $\{x_H\}$.

PROPOSITION 9]

Y is compact if and only if cl(f(X)) is compact for each f in A.

PROOF]

By the COROLLARY of THEOREM 1 and previous PROPOSITION and the way con-

structing Y, Y is compact if and only if $\operatorname{cl}(f_a(Y))$ is compact for each f in A. Since $\operatorname{cl}(f_a(Y))$ is compact for each f_a in A, thus the statement follows.

THEOREM 4]

(Y, e) is a compactification of X and only if.

- 1) for each f_{α} in A, $\operatorname{cl}(f_{\alpha}(X))$ is compact,
- 2) A separates points of X.
- 3) the topology on X is the weak topology induced by A.

PROOF]

This theorem follows immediately THEO-REM 3) and PROPOSITION 9).

REFERENCES

 Bourbaki N., General Topology. Part 1, Addison Wesley Reading, Mass., p. 145-147,

- (1966).
- 2. Dugundji J., Topology, Allyn & Bacon, Boston, Mass., (1966).
- 3. Hueytzen J. WU, Extension and new observations of Tychonoff, Stone-Weier-strass theorems, compactifications and the Realcompactification, Top. 'and its Appl., Vol. 16, p. 107-116, (1983).
- 4. Jack Porter & John Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc., 138, p. 159-170,(1969).
- 5. Kelley John L., General Topology, D. Van Nostrand Co. Inc., (1955).
- 6. Larry L. Harrington & Paul E. Long, Characterizations of C-compact spaces, Amer. Math. Soc., Vol. 52, p. 417-126, (1975).
- 7. Stephen Willard, General Topology, Addison Wesley Publishing Company, p. 123-129, (1970).
- Viglino G., C-compact spaces, Duke Math.
 J., 36, p. 761-761, (1969).