On θ -Continuous Functions into Urysohn Spaces

by Sin Min Kang Gyeongsang National University, Jinju, Korea

1. Introduction

S. V. Fomin [1] has introduced the concept of θ -continuity. The present note is to vestigate closedness under θ -continuous functions into Urysohn spaces.

Throughout this note, spaces always mean topological spaces. Let S be a subset of a ace X. The closure of S and the interior of S are denoted by Cl(S) and Int(S), reectively. A point $x \in X$ is said to be θ -cluster point of S [7] if $S \cap Cl(U) \neq \emptyset$ for each en neighborhood U of x. The set of all θ -cluster point of S is called the θ -closure of and is denoted by $Cl_{\theta}(S)$. If $Cl_{\theta}(S) = S$, then S is called θ -closed. The complement of 1 θ -closed set is called θ -open.

Definition 1. 1. A function $f: X \longrightarrow Y$ is said to be θ -continuous [1] and weakly-intinuous [2] if for each $x \in X$ and each open neighborhood V of f(x), there exists an ien neighborhood U of x such that $f(Cl(U)) \subset Cl(V)$ and $f(U) \subset Cl(V)$, respectively.

It is known that θ -continuous functions are always weakly-continuous, but the conerse is not true [2].

For the function $f: X \longrightarrow Y$, the subset $\{(x, f(x)) | x \in X\}$ of the product space $X \times Y$ is alled the graph of f and is denoted by G(f).

Definition 1. 2. The graph G(f) is said to be θ -closed with respect to $X \times Y$ [4] (resp. -closed with respect to X [4], δ -closed [6] and strongly-closed [3]) for each $(x,y) \notin G(f)$, there exist open neighborhoods U and W of x and y, respectively, such that $Cl(U) \times Cl(W) \cap G(f) = \emptyset$ (resp. $[Cl(U) \times W] \cap G(f) = \emptyset$. $[Int(Cl(U)) \times Int(Cl(W))] \cap G(f) = \emptyset$ and $[U \times Cl(W)] \cap G(f) = \emptyset$.

2. Main Theorems

Lemma 2.1. If $f: X \longrightarrow Y$ is θ -continuous functions, then $f^{-1}(Cl(V))$ is θ -open in f for every open set V of Y.

Proof. Let V be any open sets of Y and $x \in f^{-1}(V)$. Then there exists an open set Y in Y such that $f(x) \in G \subset V$. Therefore, there exists an open neighborhood U of X uch that $f(Cl(U)) \subset Cl(G)$. Hence, we obtain $x \in U \subset Cl(U) \subset f^{-1}(Cl(V))$. This shows hat $f^{-1}(Cl(V))$ is θ -open in X.

Theorem 2. 2. If $f: X \longrightarrow Y$ is θ -continuous and Y is Urysohn spaces, then $(x_1, x_2) | f(x_1) = f(x_2) \}$ is θ -closed in $X \times X$.

14 S. M. Kang

Proof. Let $\Phi = \{(x_1, x_2) | f(x_1) = f(x_2)\}$. If $(x_1, x_2) \notin \Phi$, then $f(x_1) \neq f(x_2)$. Hence there exist open neighborhoods V_1 and V_2 of $f(x_1)$ and $f(x_2)$, respectively, such that $Cl(V_1) \cap Cl(V_2) = \phi$. Since f is θ -continuous, $f^{-1}(Cl(V_1))$ and $f^{-1}(Cl(V_2))$ are θ -open neighborhoods of x_1 and x_2 , respectively, by Lemma 2.1. Hence $f^{-1}(Cl(V_1)) \times f^{-1}(Cl(V_2))$ is ar θ -open neighborhood of (x_1, x_2) by [5]. By [8, p. 88], this neighborhood can not meet Φ Thus Φ is θ -closed in $X \times X$.

Theorem 2. 3. If $f: X \longrightarrow Y$ is θ -continuous and Y is Urysohn spaces, then G(f) i θ -closed with respect to $X \times Y$.

Proof. Let $(x, y) \notin G(f)$. Then $y \neq f(x)$ and there exist open neighborhoods V and W of f(x) and y, respectively, such that $Cl(V) \cap Cl(W) = \phi$. By θ -continuity of f, there exists an open neighborhood U of x such that $f(Cl(U)) \cap Cl(W) = \phi$. Hence, we obtain $\{Cl(U) \times Cl(W)\} \cap G(f) = \phi$.

The following Corollary 2.4 and 2.5 follow immediately from Theorem 2.3.

Corollary 2.4. If $f: X \longrightarrow Y$ is θ -continuous and Y is Urysohn spaces, then

- i) G(f) is θ -closed with respect to X.
- ii) G(f) is δ -closed in $X \times Y$.

Corollary 2.5 ([3]). If $f: X \longrightarrow Y$ is weakly-continuous and Y is Urysohn spaces, then G(f) is strongly-closed in $X \times Y$.

References

- 1. S. V. Fomin, Extensions of topological spaces, Dokl. Akud. Nauk SSSR, 32(1941), 114~116=Ann. of Math., 44(1943), 471~480.
- 2. N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44~46.
- 3. P.E. Long and L.L. Herrington, Functions with strongly-closed graphs, Bollettino Un. Math. Ital., 12(1975), 381~384.
- 4. P. E. Long and L. L. Herrington, Strongly θ -continuous functions, J. Korean Matl Soc., 18(1981), 22-28.
- 5. P.E. Long ang L.L. Herrington, The To-topology and faintly continuous function. Kyungpook Math. J., 22(1982), 7~14.
- 6. T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16(1980), 161~166.
- 7. N. V. Veličko, H-closed topological spaces, Amer. Math. Transl., 78 (1968), 103~10
- 8. S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.