The Norm-Preserving Linear Maps in Abelian Algebras

by Woon Gab Jeong Suwon University, Suwon, Korea

Introduction

 $f: A \longrightarrow A$ is a K-algebra automorphism, then f preserves norms. Where A is a f-dimensional associative K-algebra with unity. In this paper we shall consider the erse problem in the case when f is a finite-dimensional semisimple abelian K-algebra Throughout this paper f is an infinite field of an arbitrary characteristic.

Main Theorems

mma 1. Let F_i be purely inseparable finite extensions of K, $i=1, \dots, r$. Put $f_1 \dotplus F_2 \dotplus \dots \dotplus F_r$. Suppose that $f: A \longrightarrow A$ is a K-linear norm-preserving map such f(1) = 1. Then f is a K-algebra automorphism of A.

'roof. Put $[F_i:K] = n_i$. Then $N_{A/K}(X_1, \dots, X_r) = X_1^{n_1} \dots X_r^{n_r}$. Hence the routine degree nent shows that $f(X_1, \dots, X_r)$ is only the permutation of (X_1, \dots, X_r) . Hence f is a ebra automorphism of A. This completes the proof.

nark. The above proof also shows that $Aut_{\kappa}(A)$ is a finite group.

nma 2. Let F/K be a finite extension and let E' be a separable closure of K in et $f(X) \subseteq E'[X]$ be irreducible over E'. Then f(X) is also irreducible over F if is separable.

Proof. We may assume $\operatorname{char}(K) = p = \operatorname{prime}$ number. Put $[F : E'] = p^m$. Suppose f(X): irreducible in F[X]. Then f(X) = g(X)h(X), $\deg(g)$, $\deg(h) \ge 1$, $h(X) \in F[X]$.

nce $(f(X))^{p^m} = (g(X))^{p^m} (h(X))^{p^m}, g(X)^{p^m}, h(X)^{p^m} \in E'[X].$

nce $f(X) | g(X)^{p^m}$ and $f(X) | h(X)^{p^m}$. Let α be a zero of f(X).

en $g(\alpha) = h(\alpha) = 0$. Hence f(X) is not a separable polynomial. This is a contradiction. completes the proof.

nma 3. Let F/K be a finite extension and let E' be a separable closure of K in F et E/E' be a finite extension such that E/K is a Galois extension. Then $E = E_1 \dotplus \cdots \dotplus E_r$ (E-algebra isomorphism). Where E_i/E is a purely inseparable sion and r = [E' : K]

'roof. Since E/K is a separable extension there exists $a \in E$ such that E = K(a). Put = Irr(a, K, X). Then $p(X) = p_1(X) \cdots p_s(X)$, where $p_i(X)$ is a distinct irreducible smial in E'[X] because p(X) is a separable polynomial. $p_i(X)$ is also irreducible

over F by Lemma 2.

Now we have the commutative diagram.

$$E' \otimes_{\kappa} E \longrightarrow F \otimes_{\kappa} E$$

$$(E'-\text{algebra} \text{ isomorphism}) \parallel \rangle \qquad \qquad \parallel \rangle$$

The above diagram shows that every idempotent in $F \otimes_{\kappa} E$ belongs to $E' \otimes_{\kappa} E$ a $F \otimes_{\kappa} E$ has no nilpotent elements except zero. Therefore $F \otimes_{\kappa} E \cong E_1 \dotplus E_2 \dotplus \cdots \dotplus E_r$, finite extension by the Wedderburn Structure Theorem. Since every idempotent in $F \otimes$ belongs to $E' \otimes_{\kappa} E$ we can conclude $r \leq dim_E(E' \otimes_{\kappa} E) = [E' : K]$.

On the other hand E' = K(b) since E' is a separable extension of K.

Put f(X) = Irr(b, K, X). Then f(X) splits over E since E is a normal extension of Therefore $E' \otimes_K E \cong E[X]/(f(X)) \cong E + E + \cdots + E$ (E-algebra isomorphism).

$$r' = [E' : K]$$
-times

Therefore there exists a E-basis $\{b_1, b_2, \dots, b_{r'}\}$ of $E' \otimes_{\kappa} E$ such that $b_i^2 = b_i$ and $b_i b_i$ for $i \neq j$.

Now consider the isomorphism $\phi: F \otimes_K E = E_1 + E_2 + \cdots + E_r$

Then $(\phi(b_i))^2 = \phi(b_i)$ and $\phi(b_i) \cdot \phi(b_j) = 0$ for $i \neq j$.

Therefore we conclude that r' = r and $\phi(E' \otimes_{\kappa} E) = E + E + \cdots + E$.

r-times

Now $x^{[F:E']} \in E' \otimes_{\kappa} E$ for all $x \in F \otimes_{\kappa} E$. Hence E_i/E is a purely inseparable extens This completes the proof.

Theorem 1. Let A be a finite-dimensional semi-simple abelian K-algebra and let $f: A \to A$ be a norm-preserving K-linear map such that f(1) = 1. Then f is a K-a morphism of A.

Proof. By the Wedderburn Structure Theorem we have the K-algebra isomorph $A \cong F_1 \dotplus F_2 \dotplus \cdots \dotplus F_n$, F_i / K is a finite extension. We may assume that F_i is containe some fixed algebraic closure of K. Let $E_i = K(b_i)$ be a separable closure of K is and let E be the normal closure of $K(b_1, b_2, \cdots, b_n)$. Then

 $A \otimes_{\kappa} E \cong (F_1 \otimes_{\kappa} E) \dotplus (F_2 \otimes_{\kappa} E) \dotplus \cdots \dotplus (F_n \otimes_{\kappa} E) \cong E_1 \dotplus E_2 \dotplus \cdots \dotplus E_r$ (E-algebra isomorphism where E_i / E is a purely inseparable extension by Lemma 3.

Since K is an infinite field $f \otimes_{\kappa} id$: $A \otimes_{\kappa} E \longrightarrow A \otimes_{\kappa} E$ is a E-linear norm-preser map such that $(f \otimes_{\kappa} id)$ (1) = 1. Therefore $f \otimes_{\kappa} id$: $A \otimes_{\kappa} E \longrightarrow A \otimes_{\kappa} E$ is an E-algebra tomorphism of $A \otimes_{\kappa} E$ by Lemma 3. Hence $f: A \longrightarrow A$ is a K-algebra automorphism This completes the proof.

emark. The above proof also shows that $\operatorname{Aut}_{\kappa}(A)$ is a finite group. ounterexample to Theorem 1. Let $K=\mathbb{Z}/2\mathbb{Z}$, $A=GF(2^n)$. Then every invertible K-ar map $f:A\longrightarrow A$ such that f(1)=1 preserves norms. Put $G=\{f:A\longrightarrow A\mid f\text{ is }K$ -ar and invertible and $f(1)=1\}$. Then $\#G\trianglerighteq(n-1)!\trianglerighteq n=\#Aut_{\kappa}(A)$ for $n\trianglerighteq 4$. Exercise Theorem 1. does not hold in this case.

References

Hungerford, T.W., 1980, *Algebra*, 2nd Edition, Berlin-Heidelberg-New York: Springer-Verlag.

Richard S. Pierce, 1980, Associative Algebras, New York-Heidelberg-Berlin: Springer-Verlag.