$CCl_4$중에서 Thioacetamide와 N,N-Dimethylacetamide사이의 수소 결합에 관한 분광학적인 연구

Near-IR Spectroscopic Studies of the Hydrogen Bonding between Thioacetamide and N,N-Dimethylacetamide in $CCl_4$

  • 이강봉 (고려대학교 이과대학 화학과) ;
  • 김병철 (고려대학교 이과대학 화학과) ;
  • 윤창주 (성심여자대학 화학과) ;
  • ;
  • 최영상 (고려대학교 이과대학 화학과)
  • Kang Bong Lee (Department of Chemistry, Korea University) ;
  • Byung-Chul Kim (Department of Chemistry, Korea University) ;
  • Chang-ju Yun (Department of Chemistry, Song-Sim College for Women) ;
  • O. D. Bonner (Department of Chemistry, University of South Carolina) ;
  • Young-Sang Choi (Department of Chemistry, Korea University)
  • 발행 : 1986.12.20

초록

Thioacetamide(TA)-CCl$_4$와 TA-N,N-dimethlylacetamide (DMA)-CCl$_4$ 용액에서 TA의 $v_3$ + Amide II 조합띠의 근적외선 스펙트럼을 5$^{\circ}$ ~55$^{\circ}$C 에서 얻었다. 삼성분계에서 이 조합띠는 단위체 TA, 1 : 1 TA-DMA complex and 1 : 2 TA-DMA 및 1 : 2 TA-DMA 성분으로 나타나지만, 묽은 용액에서는 단위체 TA와 1 : 1 복합체만이 나타나며 이를 컴퓨터를 사용해서 각 띠의 형태를 Lorentzian-Gaussian 곱의 함수로 보아 분리하였다. 농도 및 온도에 따른 스펙트럼을 분석하여 1 : 1복합체에 대한 평형상수와 열역학적 피라미터들을 구했으며, ${\Delta}H^{\circ}$는 -14.4 KJ mol$^{-1}$이었고 ${\Delta}S^{\circ}$는 -15.6 J mol$^{-1 }deg^{-1}$이었다.

Spectra for the $v_3$+ Amide II combination band of thioacetamide(TA) were obtained in carbon tetrachloride solutions and in very dilute solutions of TA-N,N-dimethlylacetamide (DMA) in carbon tetrachloride in the range of 5~55$^{\circ}$C. The combination band in the three component system can be resolved into components due to monomeric TA, 1 : 1 TA-DMA complex and 1 : 2 TA-DMA complex. In the dilute solutions the experimental spectrum was resolved by using the computer into its two Lorentzian-Gaussian product components which have been identified with the monomeric TA and the 1 : 1 complex. The equilibrium constants and thermodynamic parameters of 1 : 1 complex were determined by analysis of concentration and temperature dependent spectra. The ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ for the 1 : 1 complex were -14.4 KJ mol$^{-1}$ and -15.6 J mol$^{-1}deg^{-1}$, respectively.

키워드

참고문헌

  1. J. Phys. Chem. v.85 J.N. Spencer
  2. Can. J. Chem. v.58 J.N. Spencer(et al.)
  3. J. Phys. Chem. v.82 J.N. Spencer(et al.)
  4. Spectrochim. Acta. v.31A O.D. Bonner;Y.S. Choi
  5. J. Molec. Struct. v.28 T. Ottersen;H.H. Jensen
  6. J.C.S. Faraday I v.76 T.H. Lilley(et al.)
  7. J. Phys. Chem. v.75 L.L. Graham;C.Y. Chang
  8. J. Molec. Struct. v.53 D.J. Gardiner;A.J. Lees;B.P. Straughan
  9. J. Am. Chem. Soc. v.100 J.E. Del Bene
  10. J. Am. Chem. Soc. v.96 A. Johansson;P. Kollman;S. Rothenberg;J. McKelvey
  11. J. Am. Chem. Soc. v.94 A. Johansson;P.A. Kollman
  12. J. Molec. Struct. v.26 T. Ottersen
  13. J. Am. Chem. Soc. v.101 P.J. Rossky;M. Karplus
  14. Tetrahedron Letter. v.18 E. Gentric(et al.)
  15. Spectrochim. Acta. v.28A P.J.F. Griffiths;G.D. Morgan
  16. Spectrochim. Acta. v.25A T. Gramstad;J. Sandstrom
  17. Spectrochim. Acta. v.41A Y.S. Choi;Y.D. Huh;O.D. Bonner
  18. J. Korean Chem. Soc. v.29 Y.S. Choi(et al.)
  19. J. Korean Chem. Soc. v.27 J.A. Yu;Y.S. Choi
  20. J. Phys. Chem. v.75 L.L. Graham;C.Y. Chang
  21. J. Am. Chem. Soc. v.100 J.E. Del Bene
  22. J. Molec. Struct. v.26 T. Ottersen;H.H. Jensen