Detonation Characteristics of L. P. G /$O_2$Gas Mixture and the Self-Ignition Condition for the Formation of Detonative Wave

액화석유 가스 (L. P. G) 와 산소 혼합물의 폭발특성 및 점화조건에 관한 연구

  • Sung Nak Choi (Department of Chemistry, Pusan National University) ;
  • Kyu Sun Shim (Korean Institute of Chemical Research) ;
  • Un Sik Kim (Department of Chemistry, Pusan National University) ;
  • Sock Sung Yun (Department of Chemistry, Choong Nam National University) ;
  • Ung Kim (Department of Physics, Yonsei University)
  • 최성락 (부산대학교 자연과학대학 화학과) ;
  • 심규선 (한국화학연구소) ;
  • 김은식 (부산대학교 자연과학대학 화학과) ;
  • 윤석승 (충남대학교 이과대학 화학과) ;
  • 김웅 (연세대학교 이과대학 물리학과)
  • Published : 1986.08.20

Abstract

Detonation reaction in L.P.G./$O_2$ mixture gas has been investigated over the L.P.G. concentration range of 3∼45 volume%. The variation of detonation velocity with mixture ratio is very interesting as it shows and inflection point near at the stoichiometric ratio. This might be ascribed to the fact that the detonation reactions at fuel-rich condition and fuel-lean condition proceed via different mechanisms. The maximum detonation velocity of 2.65km/sec occurs not at stoichiometric ratio(${\phi}$=1) but at fuel-rich condition (${\phi}$=1.57). Assuming that a stable detonation wave must propagates with the constant velocity, The upper and lower limit of detonation were determined and found to be 40.0 and 3.40 L.P.G. volume% respectively. The shock-heating technique was also utilized for the measurement of self-ignition temperature onsetting a stable detonation wave at varous mixture ratios. The self-ignition temperature at stoichiometric ratio is $742{\pm}3{\circ}K$ and the self-ignition temperature increases as the mixture ratio deviates from the stoichiometric condition.

충격관을 사용하여 L.P.G./$O_2$혼합기체의 폭발반응에 대해 L.P.G. 농도 3~45 부피 % 범위에 걸쳐 조사하였다. 본실험조건하에서 폭발가능한 하한농도조건은 L.P.G.농도 3.4%, 상한농도조건은 40.0%로 측정되였다. L.P.G.농도가 증가함에 따라 폭발파속도는 증가하였으나 당량비조건(${\phi}$=1, L.P.G. 농도 17.2%)에서 변곡점을 나타내었으며 최대속도는 당량비보다 1.57배 큰 농도조건(${\phi}$=1.57)에서 2.65km/sec를 나타낸 후 다시 감소하는 경향을 나타내었다. 당량비근처에서 변곡점이 나타난 것은 L.P.G. 농도가 당량비보다 적은 조건과 당량비보다 큰 조건하에서 폭발반응메카니즘이 다른데에 기인하는 것으로 믿어진다. 또한 충격가열 방식을 사용하여 L.P.G./$O_2$ 조성비에 따른 자동점화 온도를 측정하였다. 폭발파를 형성시킬 수 있은 자동점화온도는 당량비조건에서 $742{\pm}3{\circ}K$의 최저값을 나타냈으며 당량비로 부터 벗어남에 따라 급격히 증가하는 경향을 나타냈다.

Keywords

References

  1. Ann. Rev. phys. Chem. v.20 R.L. Belford;R.A. Strelow
  2. Ann. Rev. phys. Chem. v.21 D.A. Learhard;J.H. Purnell
  3. Chem. Rev. v.69 H.M. Frey;R. Walsh
  4. Proc. Sym. (Int) Comb. v.15 J. Troe
  5. Int. J. Chem. Kin. v.3 E.V. Waage;B.S. Rabinovitch
  6. Int. J. Chem. Kin. v.5 A. Burcat;G.B. Skinner;R.W. Crossly;K. Schneller
  7. J. Phys. Chem. v.79 A. Lifshitz;M. Frenklach
  8. Max-planck institat Bericht v.23 H. Gg. Wagner(ed.)
  9. Combut. Flame v.17 F.L. Dryer;D.W. Maegeli;I. Glassman
  10. Acta Astronautica v.4 M. Sichel
  11. Ann. Rev. Fluid Mech. v.5 A. Oppenbeim;R. Soloukin
  12. American Scientist v.68 R.A. Strehlow
  13. The shock Tube in High-temperature Chemical physics A.G. Gaydon
  14. Theory of Detonation Y. Zeldovich
  15. Proc. 9th Internat 1 shock Tube Symposium A. Lifshitz;K. Scheller;A. Burcat
  16. AIAA, J. v.4 R.D. Hawthorne;A.C.Nixon
  17. Int. J. Chem. Kin. v.3 E.V. Waage;B. B. Rabinobich
  18. J. phys. Chem. v.84 T. Kolke;W.C. Gardiner Jr.
  19. AFATL-TR 73-125 Fundamental Aspects of Unconfined Explosions J.A.Nicholls;M. Sichel;R.S. Fry;C. HuD;R. Glass;D. De Saro;K. Kearney
  20. J. Amer. Off. nat. Combustibles Liquides v.11 Thesis, Faculte des Sciences Universite de Nancy M.J. Breton
  21. combustion, Flames and Explosions of Gases B. Lewis;G. von Elbe
  22. Combust. Flame v.39 R. Atkinson;D.C. Bull;D.J. Shuff
  23. Astronautica Avta v.17 V.P. Koro Deinikov;V.A. Levin;V.V. Markov;G.G. Chernyi
  24. Combustion I. Glassman
  25. Thesis, Faculte des Sciences Universite de Nancy M.J. Breton