DAEHAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 30, No. 4, 1986 Printed in the Republic of Korea

> 한개의 산소다리를 가진 몰리브덴(V)착물의 산소고리화반응(I). 아세톤 수용매에서 용매물과 ($Mo_2O_3(bipy)_2(NCS)_4$)의 반응

> > 吳相午¹ · 權鎭基 · 金島洗^{*} 경북대학교 자연과학대학 화학과 *대구대학교 사범대학 화학과 (1985. 3.19 접수)

Oxygen Ring Formation Reaction of Monoxo-Bridged Binuclear Molybdenum(V) Complexes (I). Reaction of $(Mo_2O_3(bipy)_2(NCS)_4)$ with Solvent Water in Aqueous Acetone Mixture

Sang-Oh Oh[†], Jin-Ki Kwon, and Chang-Su Kim^{*}

Department of Chemistry, Kyngpook National University, Taegu 635, Korea *Department of Chemical Education, Taegu University, Taegu 635, Korea (Received March 19, 1985)

요 약. 아세톤수용액에서 한개의 산소가 다리로된 이핵몰리브덴(V)착물인 [Mo₂O₃(bipy)₂-(NCS)₄)는 이옥소다리이핵몰리브덴(V)착물인 [MoO₄(bipy)₂(NCS)₂)를 생성한다. [Mo₂O₃(bipy)₂-(NCS)₄)에서 [Mo₂O₄(bipy)₂(NCS)₂)로 바꾸어 지는 속도는 분광광도법으로 측정하였다. 용매 물과 이옥소다리이핵몰리브덴(V)착물의 생성속도는 속도법칙, 속도=k[Mo₂O₃(bipy)₂(NCS)₄](H₂O)에 따 른다. 이옥소다리착물의 생성반응매카니즘에 대해서 논의된다. 관찰된 음의 활성화부피는 착물이용 매분자를 전이상태에서 강하게 당길 것으로 보인다.

ABSTRACT. Monoxo-bridged binuclear molybdenum(V) complex, $[Mo_2O_3 (bipy)_2 (NCS_4)$ in aqueous acetone mixture produces the corresponding dioxo-bridged binuclear molybdenum(V) complex, $[Mo_2O_4(bipy)_2 (NCS)_2]$. The rate of conversion of $[Mo_2O_3(bipy)_2(NCS)_4]$ to $[Mo_2O_4-(bipy)_2(NCS)_2]$ has been measured by spectrophotometric method. The rate of formation of dioxobridged binuclear molybdenum(V) complexes with solvent water follows the rate law, rate=k $[Mo_2O_3(bipy)_2(NCS)_4]$ $[H_2O]$. The reaction mechanism for the formation of dioxo-bridged complex is discussed. The observed negative volume of activation shows that the complex is strongly attracted to the solvent molecules at transition state.

1.서 론

낮은 염화이온 및 수소이온농도에서 옥소몰리 브덴(V)의 이합체인 (Mo₂O₄Cl₆)⁴⁻¹ 및 [Mo₂O₄-Cl₂(OH₂)₂)²⁻²가 생성되고 이보다 높은 6M의 염 산농도나 염화이온농도에서는 두 산소가 브리지 된 Mo₂O₄²⁺의 한다리 산소가 떨어져서 (Mo₂O₃-Cl₈)²⁻가 생성^{3,4}된다. 또 ¹⁸O 교환반응연구에 의 하면 엽기성용액에서 이 몰리브덴착물은 중합된 수산화물이 생성됨⁶이 밝혀졌다.

몰리브덴(V)의 이합화반응에서 산의 농도가 1~5M의 농도범위 이하일때는 반응식 (1)과 같 吳相午・摧鎭基・金昌洙

은 반용5.6이 일어난다.

 $M_{02}O_3^{+}aq + H_2O \longrightarrow Mo_2O_4^{+}aq + 2H^+ \qquad (1)$

이 반응에서 수소이온농도가 크면 Mo₂O₄²⁺aq 는 다시 Mo₂O⁴₃⁺aq 로 된다. pH가 7이고 NH₂ CH₂CH₂SH(AME)이 Mo₂O₄²⁺의 농도가 낮을때 [Mo₂O₃(AME)(OH)₄)는 Mo₂O₄²⁺의 기본구조를 가진 착물을 생성⁷한다. 한개의 다리산소를 가 진 [Mo₂O₃(NCS)₈]⁴⁻를 에탄을 수용매에서 물과 반응하여 두개의 산소다리를 가진 착물인 [Mo₂-O₄(NCS)₆)⁴⁻ 가 생성⁸된다.

[Mo₂O₃(bipy)₂(NCS)₄)도 물과 반응하여 [Mo₂-O₄(bipy)₂(NCS)₂)를 생성하므로 본 연구에서는 아세톤 수용매에서 [Mo₂O₃(bipy)₂(NCS)₄]에서 부터 [Mo₂O₄(bipy)₂(NCS)₂]를 얻고 Mo₂O₃⁴⁺에 서 Mo₂O₄²⁺로 뼈대구조가 바뀌는 반응의 속도 와 그 메카니즘을 추정하여 보았다.

2.실 험

시 약. 합성에 사용된 시약은 특급 및 일급 시약을 정제하지 않고 그대로 사용하였으며 용매 로 사용된 아세톤은 재 증류하여 사용하였다. 과염소산나트륨은 과염소산과 수산화나트륨을 중화시킨 용액에서 부터 얻어서 사용하였다. 물 은 과망간산칼륨의 존재하에서 재 증류한 것을 사용하였다.

고압용책 및 장치. 실험에 사용한 셑은 UV-210 Shimadzu 분광광도계에 맞도록 제작한 것으 로 그 구조는 Fig. 1에 나타내었다. 이 셀의 재 질은 스데인레스 SUS630으로 만들었으며 항온 된 물을 순환시켜 반응용기를 일정한 온도로 유 지되도록 하였다. 셸은 내부에 4개의 사파이어 창이 있는 겹빛살식장치로서 이들 양쪽에 기준 용액과 시료용액이 각각 들어가 내부 양쪽의 피 스톤에 의해 각각의 용액으로 외부에서 발생된 압력이 동시에 전달되도록 되어 있다. 압력발생 장치는 스위스 Nova 사의 수동식 유압압력발생 장치를 사용하였다.

착물의 합성. (Mo₂O₃(bipy)₂(NCS)₄)는 보고 된 문헌에 따라 합성하였다.

[Mo₂O₃(bipy)₂(NCS)₄)저장용액, 25°C의 아

Fig. 1. Optical high pressure cell: J, temp. jacket. M, steel mountaings. O, o-rings sealing the oil. OR, o-rings sealing the sample(reference) sol. S, sapphire windows.

세톤에 [Mo₂O₃(bipy)₂(NCS)₄]를 포화로 녹인 다음 질소기체를 통과시켜 산소를 제거하여 냉 장고에 보관하면서 사용하였다. 이 용액의 스팩 트럼은 적어도 2일 동안은 변화하지 않았으나 저장용액은 3시간 정도만 사용하였다.

반응속도의 축정. (Mo₂O₃(bipy)₂(NCS)₄)는 물에 잘 녹지 않으나 아세톤과 같은 유기용매에는 잘 녹으며 시간에 따른 스페트럼의 변화가 관찰 되지 않았다. 그래서 아세톤수용매에서 [Mo₂O₃-(bipy)2(NCS)4)이 (Mo2O4(bipy)2(NCS)2)를 생 성하는 속도를 측정하는 반응에서 반응물인 물 은 용매이므로 착물[MoO3(bipy)2(NCS)4)보다 과량 존재하게 되어 유사일차반응 조건이 된다. 그래서 속도=k[Mo₂O₃(bipy)₂(NCS)₄) [H₂O]는 속도=koosd (Mo2O3(bipy)2(NCS)4)로 된다. 여기 서 kobsd=k[H2O]이다. 반응속도는 아세톤에 녹 인 차물을 셀에 넣고 항온된 물을 램다피펫으로 신속하게 가한다음 착물의 최대흡수띠인 550nm 에서 Shimadzu UV120-01 분광광도계를 이용하 여 흡광도를 측정한다. 시간 t에 대한 ln(A_t-A...)의 변화를 식(2)에 따라 그린 직선의 기울기 에서 부터 속도상수 kobsd 를 구하였다.

$$\ln\left(\frac{A_o - A_{\infty}}{A_t - A_{\infty}}\right) = k_{obsd}t \tag{2}$$

이때 A,와 A∞는 시간 t와 평형에서의 흡광 도를 각각 나타낸다. 물의 농도는 11~30M의 범위이고 이때 반응온도는 반응속도의 압력 및

346

온도의존성에 대한것을 제외하고는 25°C에서 측 정하였다. 모든 데이타는 삼보 TriGem20XT전 자계산기를 이용하여 최소제곱법으로 처리하였 다.

생성물의 확인. 반응속도를 측정한 용액을 30 분동안 물과 반응시키면 (Mo₂O₃(bipy)₂(NCS)₄) 는 Mo₂O₄²⁺ 뼈대구조를 가진 노란색의 (Mo₂O₄-(bipy)₂(NCS)₂)로 된다. 이 착물은 Hewlett Packard 185B 탄소, 산소 및 질소분석기를 이용하 여 분석하였으며 몰리브덴함량은 무게분석법으 로 얻었다. 또 이온세기조결에 사용된 파염소산 나트륨의 농도는 이 용액을 이온교환수지(Dowex 50W-X2 H⁺형)에 통과시킨 다음 Na⁺에 의해 치환된 H⁺를 수산화나트륨용액으로 표정하여 결 정하였다. 또 이 착물의 전자흡수스펙트럼은 Perkin-Elmer Lambda 5 와 Shimadzu UV120-01 분광광도계로 얻고 적외선스펙트럼은 Shimadzu IR440 적외선분광광도계를 사용하여 KBr 원판법 으로 얻었다.

3. 결과 및 고찰

아세톤수용매에서 [Mo₂O₃(bipy)₂(NCS)₄)는 반 응(3)과 같이 [Mo₂O₄(bipy)₂(NCS)₂] 착물로 쉽 게 변화되는데 이 용액에서 부터 얻은 생성물의 분석결과는 *Table* 1과 같다.

 $(M_{02}O_3(bipy)_2(NCS)_4) + H_2O \longrightarrow$ $(M_{02}O_4(bipy)_2(NCS)_2) + 2HSCN \quad (3)$

이 결과에서 실험값과 계산값 사이에 아주 좋 은 일치를 보여 주었다.

이들 [Mo₂O₄(bipy)₂(NCS)₂)의 생성반응 동안 착물이 산화되어서 몰리브덴(VI)의 착물이 생성 되었을 가능성을 배제할 수 없기 때문에 이들 착물의 산화상태를 결정해 보려 하였으나 이 반 용생성물이 물에 잘 녹지 않고 또 리간드가 산 화되므로 산화제를 이용한 몰리브덴의 산화수 결정법은 아주 어려웠다. 그래서 이 반응생성물 인 [Mo₂O₄(bipy)₂(NCS)₄)을 진한염산에 녹여서 반응(4)에서와 같이 몰리브덴(V)에서 만이 볼 수 있는 초록색의 [MoOCl₅)²⁻의 것과 똑 [']같은 전자흡수스펙트립^{10,11}을 얻었다.

Table 1. Rate constants for the reaction of $(Mo_2O_3 (NCS)_4(bipy)_2)$ with water in aqueous acetone mixture at 25°C

$(Mo_2O_3(NCS)_4)$ (bipy) ₂) × 10 ² , M	(H ₂ O), M	(HClO ₄) ×10 ³ , M	(NCS) ×10 ⁵ , M	$k_{obsd} \times 10^2$, sec ⁻¹
6. 54	27.1	11.40	2	.01±0.27
6.54	27.1	10.20	2	20±0.30
6.54	27.1	9.09	2	0.07 ± 0.10
6.54	27.1	7.96	2	2. 13±0. <mark>1</mark> 3
6.54	27.1	6.82	2	2.18±0.16
6.54	27.1	5.68	2	2.04 ± 0.26
6.54	27.1	4.50	ţ	$.80 \pm 0.17$
6.54	27.1	3. 41	1	2.21 ± 0.19
6. 54	27.1	2.27	t	$.94 \pm 0.24$
6.54	27.1	1.14	1	. 83±0. 17
11.33	11, 1	2.33	(0.22 ± 0.03
5.67	11. 1	2.33	(0.44±0.06
2.83	11. 1	2.33	(0.54 ± 0.22
2.27	11. 1	2.33	(). 25±0, 10
1. 13	11. 1	2.33	(). 30 ± 0.16
0.57	11.1	2.33). 19± 0. 01
5.26	30. 5	4.57	2	2.50±0.52
5.26	29.4	4. 57	2	2.28±0.55
5.26	28.3	4. 57	2	2.22 ± 0.27
5.26	27.2	4. 57	1	l.99±0.43
5.26	26.1	4. 57	:	l.83±0.33
5.26	25.1	4. 57]	1.84 ± 0.17
5.26	24.0	4.57	1	1.53 ± 0.29
5.26	22.9	4. 57	1	$.39 \pm 0.15$
6.30	17.3	2. 5 9	(0.59 ± 0.12
6.30	17.3	2.59	2.19 (0.81 ± 0.08
6.30	17.3	2.59	4.38 (). 81±0. 25
6.30	17.3	2.59	6.57 (). 67±0. 13
6.54	27.1	5.68	(). 50 ± 0.20
6.54	27.1	5.68	(). $77 \pm 0.13^{\circ}$
6.54	27.1	5.68	:	l. 32±0. 36
6.54	27.1	5.68	2	2.04±0.32
6.54	27.1	5.68	:	2.76±0.38

a.b.c.d and * are 10°C, 15°C, 20°C, 25°C and 30°C, respectively.

 $[Mo_2O_4(bipy)_2(NCS)_4] + 10HCl \Longrightarrow$ 2[MoOCl_3]²⁻+2bipyH⁺+4HSCN+2H_2O (4)

이와같은 사실에서 이 착물은 몰리브덴(VI)로 산화된 것이 아니고 몰리브덴(V)의 반자성의 안 정한 Mo₂O₄²⁺의 기본구조로 바뀌었음을 알 수

Journal of the Korean Chemical Society

Table 1. Analytical data of the product

Product	Calc'd (found)				
	С	н	N	Мо	
Mo ₂ O ₄ (bipy) ₂ (NCS) ₂	20. 12(19. 95)	1.13(1.22)	7.82(7.89)	28.04(27.86)	

있었다.

반응물인 (Mo₂O₃(bipy)₂(NCS)₄)와 생성물인 (Mo₂O₄(bipy)₂(NCS)₂)의 특징적인 적외선흉수 스펙트럼은 Fig. 2와 같다. 이 결과에서 부터 이 들 반응물의 몰리브덴과 말단산소간의 신축진동 은 (Mo₂O₄L₂Cl₂) (L=2,2'-비피리던, 1,10-패난 트로린)^{12~14}와 비슷하게 950cm⁻¹ 부근에서 반응 물과 생성물 사이에 비슷한 위치에서 강하게 일 어났으나 생성물의 경우는 910cm⁻¹와 930cm⁻¹ 부근에서도 일어났는데 이것은 Mo₂O₄²⁺를 가진 착물에서 나타나는 현상¹⁵이다. 몰리브덴과 다리 산소간의 신축진동^{14,16}은 반응물에서는 740과 765cm⁻¹부근에서 일어났고 생성물은 760cm⁻¹부 근에서 일어났다. 이러한 결과는 Mo₂O₃⁴⁺에서 Mo₂O₄²⁺형으로 변화되었음을 뒷받침 해준다. SCN⁻¹의 탄소와 질소사이의 신축진동이 2050 cm⁻¹ 부근에서 일어난 것으로 보아 이 착물은 몰리브덴과 SCN⁻의 질소가 결합된 착물임¹⁷을 알 수가 있다. 이와같은 결과는 에탄울수용매에 서 한개의 산소가 다리로된 착물인 (Mo₂O₃ (NCS)₈)⁴⁻가 두다리산소착물인 (Mo₂O₄(NCS)₆)
⁴⁻ 가 얻어지는 것⁸과 티오시안산이온의 질소가 몰리브덴과 결합되다는 사실과 잘 일치한다.

아세톤수용매에서 Mo₂O₃⁴⁺의 기본구조를 가 진 착물이 Mo₂O₄²⁺의 착물로 바뀌는 속도를 물 의농도, 수소이온농도 및 (Mo₂O₃(bipy)₂(NCS)₄) 의 농도에 따라 측정하여 본 결과는 *Table* 2 와 같다.

(Mo₂O₃(bipy)₂(NCS)_↓]의 농도에 따라 [Mo₂-O₄(bipy)₂(NCS)₂)의 생성속도상수를 착물의 농도에 대해서 도시하여 본 결과는 Fig. 3과 같다. 이 그림은 속도상수의 (Mo₂O₃(bipy)₂(NCS)_↓)농도 의존성을 거의 보여주지 않았다. 또 물농도의 변화에 대한 속도상수의 의존성은 식(5)에 따라 거의 직선성(R=0.989)을 보여주었다.

Fig. 2. Infrared spectra of $[Mo_2O_3(bipy)_2(NCS)_4]$ (1) and product, $[Mo_2O_4(bipy)_2(NCS)_2]$ (2) obtained from the reaction (3).

Fig. 4의 기울기에서 $k_f = 1.47 \times 10^{-3} M^{-1} s^{-1}$ 로서 주어진다. 절편에서 얻은 k_b 는 음의 값으 로 주어졌는데 물의 농도가 아주 진하여 정확한 농도를 맞추기가 어려운점과 속도상수가 보다 낮은 물의 농도에서는 의존하지 않기 때문일 것 이다. 그러나 실험적 제약때문에 낮은 물의 농 도에서는 실험을 하지 못하였다.

Mo₂O₃⁴⁺에서 Mo₂O₄²⁺로 되는 반응의 속도상 수의 수소이온농도 의존성은 Fig. 5에서와 같이 거의 없음을 알 수 있다. 이것은{Mo₂O₃(bipy)₂-(NCS)₄)가 (Mo₂O₄(bipy)₂(NCS)₂)로 될때 수소

Fig. 4. Dependence of the observed rate constants on the concentration of water for the reaction (3) at 25°C. [Complex] = 5.26×10^{-2} M, (H⁺) = 4.57×10^{-3} M, I= 4.57×10^{-3} .

Fig. 5. Dependence of the observed rate constants on the concentration of hydrogen ion for the reaction (3) at 25°C. [Complex] = $6.54 \times 10^{-2}M$, $I=1.02 \times 10^{-2}$.

Fig. 6. Plot of the observed rate constants against (SCN^{-}) for the reaction (3) at 25°C. (Complex) = 6.30×10⁻²M, (H⁺)=2.59×10⁻³M, (H₂O)=17.28 M, I=2.59×10⁻³.

이온의 영향을 거의 받지 않았는데 이것은 속도 결정단계 이후에 수소이온이 관여되는 반응임을 알 수 있다. 0 0

반응물은 물과 반응하여 ^{Mo} ○ ^H 반응물은 물과 반응하여 ^{Mo} ○ ^H 루면서 각 몰리브덴원자의 SCN⁻ 하나가 떨어져 나가서 생성물(Mo₂O₄(bipy)₂(NCS)₂)를 이룬다. 이것은 반응하는 동안 SCN⁻이 해리되리라 생각 되나 어떤 단계에서 헤리되는지는 명확하게 알 수 없다. 그래서 티오시안산이온 농도에 대한 속 도의존성을 알아보았는데 *Fig.6*과 같이 의존 성을 보여주지 않았다. 이 결과에서 티오시안산 이온이 속도결정단계 이후에 해리됨을 알 수 있 다.

속도상수의 온도의존성을 알기 위해서 Arrhenius 도시를 한 결과는 *Fig.*7과 같다. 이 직 선의 기울기에서 부터 *4H*⁺=60.43kJmol⁻¹를 얻고 이 값에서 부터 *4S*⁺를 구한 결과는 -74.49 JK⁻¹mol⁻¹이었다.

식(6)에 따라 여러 압력에서 측정한 속도정수 와 대기압하에서의 속도정수비를 대수치로 하여 이것을 압력에 따라 도시한 Fig.8의 기울기로 부터 구한 4V*는 Table2와 같다.

$$\left(\frac{\partial \ln k}{\partial p}\right)_{T} = -\frac{\Delta V^{*}}{RT} \tag{6}$$

Journal of the Korean Chemical Society

349

350

Fig. 7. Arrhenius plot. (Complex) = 6.54×10^{-2} M, (H⁺) = 5.68×10^{-3} M, (H₂O) = 27.1M, I= 5.68×10^{-3} .

Fig. 8. Plot of $\ln(k_{p}/k_{1})$ as a function of pressure at 10°C. $(Mo_{2}O_{3}(bipy)_{2}(NCS)_{4}) = 6.54 \times 10^{-2}M$, $(H_{2}O) = 27.1M$, $(HCO_{4}) = 5.68 \times 10^{-3}M$.

여기에서 활성화부피 ΔV^{*} 는 음의 값(-8.0mlmol⁻¹)을 가지고 있는데 이것은 활성화상태에서 착물의 극성이 증가하여 초기상태 보다 더 많은 용매분자를 당기고 있기 때문이다. (Mo₂O₃-(bipy)₂(NCS)₄)의 물과의 반응에 대한 활성화부 피의 측정된 값은 용질분자 자체의 부피변화 V[†]와 전기적억압에 의한 착물주위의 용매 분자 의 배열상태 변화에 의한 부피변화 ΔV^{2}_{2} 의 합으 로 나타낼 수 있는데 일반적으로 후자의 ΔV^{*} 에 미치는 영향은 후자의 것이 훨씬크다.¹⁸ 전이상 태에서 전하의 분리가 있으면 착물은 용매분자를 당기개 되어¹⁹ dV^{+} 는 음을 가지게 된다. 이와 같이 음의 dS^{+} 와 dV^{+} 가 주어졌는데 이와 일 치하는 메카니즘은 배위된 SCN⁻ 이온이 몰리브 덴에서 임계거리로 떨어짐과 동시에 새로운 결 합이 이루어지는 회합성메카니즘에 의해서 반응 이 진행 될 것으로 보인다.

(Mo₂O₃(bipy)₂(NCS)₄)는 아세톤수용매에서 큰 음의 *ΔS*⁺, *ΔV*⁺ 값을 가졌는데 이것은 반응 이 회합성메카니즘에 의해서, 진행됨을 암시하 여 준다.

이상의 속도론 결과를 요약하면 속도상수 kobel 는 물의 농도에 일차로 의존하였으나 물리브덴 착물, 수소이온농도 및 티오시안산이온농도에서 는 의존하지 않았다.

이와같은 실험사실에서 부터 이 반응은 다음 과 같은 메카니즘에 의해서 반응이 진행됨을 알 수 있다.

 $Mo_2O_3(bipy)_2(NCS)_4 + H_2O \xrightarrow{k} Mo_2O_3(bipy)_2(NCS)_4(OH_2)$

 $Mo_2O_3(bipy)_2(NCS)_4(OH_2) \xrightarrow{fast}$

Mo₂O₄(bipy)₂(NCS)₂+2HSCN

여기에서속도=&[Mo₂O₃(bipy)₂(NCS)₄](H₂O) 가 되며 k_{obsd}=&[H₂O]로 주어진다. 이 반응의 메카니즘은 먼저 물분자가 몰리브덴과 결합한 다음 둘째단계에서 티오시안산이온이 빠르게 해 리됨을 알 수 있다.

본 논문은 1984~1985년의 문교부 기초과학 육성 연구 조성비에 의하여 연구되었으며 당국 에 사의를 표합니다.

인용문헌

- E. L. Stiefel, Progress in Inorg. Chem., John Wiley & Sons, 22, 93 (1977).
- M. F. Rudolf and A. Wolniak, Z. anorg. allg. chem., 408, 214 (1974).
- 3. R. Colton and G.G. Rose, Aust. J. Chem. 21, 883 (1968).
- G. P. Haight, JR., J. Inorg. Nucl. Chem., 24, 663 (1962).

한개의 산소다리를 가진 몰리브볜(V)착둘의 산소고리화반응(I)

- K. Yokoi, I. Watanabe and S. Ikeda, Bull. Chem. Soc. Japan, 58, 2172 (1985).
- C. S. Kim, R. K. Murmann and E. O. Schlemper, Transition Met. Chem., 9, 260 (1984).
- G.P. Haight, Jr., R.L. Belford and H. Chapman, Proceedings; Chemistry and Uses of Molybdenum, P.C.H. Mitchell, ed., Climax Molybdenum Co., London, 245 (1979).
- R.G. James and W. Wardlaw, J. Chem. Soc., 2726 (1928).
- O. S. Oh and J. D. Rhee, J. Korean Chem. Soc., 26, 81 (1982).
- 10. A. Kay and P.C.H. Mitchell, Nature, 219, 267 (1968).
- R. N. Jowitt and P. C. H. Mitchell, J. Chem. Soc. (A), 1702 (1970).
- 12. H.K. Saha and M.C. Halder, J. Inorg. Nucl.

Chem., 34, 3097 (1972).

- H. K. Saha and M. C. Halder, J. Inorg. Nucl. Chem., 33, 3719 (1971).
- 14. P.C.H. Mitchell, J. Inorg. Nucl. Chem., 25, 963 (1963).
- W. E. Newton, J. L. Corbin, D. C. Bravard, J. E. Searles and J. W. McDonald, *Inorg. Chem.*, 13, 1100 (1974).
- R. M. Wing and K. P. Callahan, Inorg. Chem., 8, 871 (1969).
- H. Sabat, M. F. Rudolf and B. J. -Trzebiatowska, Inorg. Chem. Acta, 7, 365 (1973).
- A. Sera, T. Miyazawa, T. Matsuda, Y. Togawa and K. Maruyama, Bull. Chem. Soc. Japn., 46, 3490 (1973).
- 19. T. W. Swaddle, Canad. J. Chem., 48, 3223 (1970).

351