Photochemical Reactivity of Chromium(III) Complexes

Chromium(III) 錯物의 光化學的 反應性

  • Jong-Jae Chung (Department of Chemistry, Kyungpook National University) ;
  • Jung-Ui Hwang (Department of Chemistry, Kyungpook National University) ;
  • Jong-Ha Choi (Department of Chemistry, Kyungpook National University)
  • 정종재 (경북대학교 자연과학대학 화학과) ;
  • 황정의 (경북대학교 자연과학대학 화학과) ;
  • 최종하 (경북대학교 자연과학대학 화학과)
  • Published : 1986.04.20

Abstract

It is shown that the substitutive ligand on the photochemical substitution reactions of $trans-Cr^{Ⅲ}N_4XY$ complexes is predicted by considering the total stabilization energy of the hypothetical primary intermediates resulting from the loss of one ligand. The total stabilization energy and one electron energy level of d-orbital are calculated within the framework of angular overlap model. According to the calculated results, the intermediates with larger total stabilization energy are, as expected, more easily produced. Consequently, the relative values of the total stabilization energy are used to decide which of the ligands in $trans-Cr^{Ⅲ}N_4XY$ complexes is preferentially labilized on the lowest energy d-d irradiation. The prediction for the leaving ligand on the photoaquation of $trans-Cr^{Ⅲ}N_4XY$ complexes is consistent.

$trans-Cr^{Ⅲ}N_4XY$착물의 광화학적 치환반응에 있어서 한개의 리간드가 떨어져서 생기는 가상적 1차중간체의 총안정화에너지를 고려함으로서 치환되는 리간드를 예측할 수 있다. 총안정화 에너지와 d-궤도함수의 1전자에너지준위는 각종첩모형체계내에서 계산하였는데, 계산결과에 의하면 총안정화에너지 값이 큰 중간체일수록 보다 쉽게 생성된다고 할 수 있다. 결과적으로 총안정화에너지의 상대적인 값은 가장 낮은 에너지의 d-d전이에 해당하는 파장의 빛을 쪼여줄 때 $trans-Cr^{Ⅲ}N_4XY$착물에서 어느 리간드가 우선적으로 불안정하게 되는가를 결정하는데 이용될 수 있으며, $trans-Cr^{Ⅲ}N_4XY$착물의 광수화반응에 있어서 떨어지는 리간드에 대한 이러한 예측은 실험상의 결과와 일치하고 있다.

Keywords

References

  1. Photochemistry of Coordination Compounds V. Balzani;V. Carassiti
  2. Concepts of Inorganic Photochemistry A.W. Adamson;P.D. Fleischauer
  3. Coord. Chem. Rev. v.39 M.A. Jamieson;N. Serpone;M.Z. Hoffman
  4. Coord. Chem. Rev. v.39 B.R. Hollbone;C.H. Langford;N. Serpone
  5. Coord. Chem. Rev. v.39 A.D. Kirk
  6. J. Amer. Chem. Soc. v.67 P. Riccieri;E.Zinato
  7. Inorg. Chim. Acta. v.52 P. Riccieri;E.Zinato
  8. J. Am. Chem. Soc. v.94 M.T. Gandolfi(et al.)
  9. Inorg. Chim. v.3 M.R. Edelson;R.A. Plane
  10. Mol. Photochem. v.5 A.D. Kirk
  11. Z. Phys. Chem. v.62 H.F. Wasgestian;H.L. Schlafer
  12. Inorg. Chem. v.9 P. Riccieri;H.L. Schlafer
  13. Inorg. Chem. v.12 E. Zinato;P. Riccieri
  14. Inorg. Chem. v.16 C.F.C. Wong;A.D. Kirk
  15. Inorg. Chem. v.19 P. Riccieri;E. Zinato
  16. Inorg. Chem. v.19 A.D. Kirk;L.A. Frederick
  17. Inorg. Chem. v.20 E. Zinato;P. Riccieri;M. Prelati
  18. Inorg. Chem. v.13 A.D. Kirk;T.L. Kelly
  19. Inorg. Chem. v.15 C.F.C. Wong;A.D. Kirk
  20. Inorg. Chem. v.13 M.T. Gandolfi(et al.)
  21. J. Am. Chem. Soc. v.95 G. Wirth;R.G. Linck
  22. Inorg. Chem. v.16 C.F.C. Wong;A.D. Kirk
  23. Adv. Chem. Ser. v.49 A.W. Adamson
  24. Can. J. Chem. v.54 W.J. Rosebush;A.D. Kirk
  25. Can. J. Chem. v.48 A.D. Kirk(et al.)
  26. Inorg. Chem. v.19 A.D. Kirk;G.P. Porter
  27. Inorg. Chem. v.19 C.C. Pyke;R.G. Linck
  28. J. Amer. Chem. Soc. v.97 P. Riccieri;E. Zinato
  29. J. Amer. Chem. Soc. v.100 D. Sandrini(et al.)
  30. J. Phys. Chem. v.71 A.W. Adamson
  31. Mol. Photochem. v.5 J.I. Zink
  32. Mol. Photochem. v.5 M. Wrighton;H.B. Gray;G.S. Hammond
  33. Theor. Chim. Acta. v.34 C. Fulani
  34. J. Am. Chem. Soc. v.96 J.I. Zink
  35. Chem. Phys. Lett. v.47 J.K. Burdett
  36. J. Am. Chem. Soc. v.99 L.G. Vanquickenborne;A. Ceulemans
  37. Inorg. Chem. v.20 L.G. Vanquickenborne;A. Ceulemans
  38. Coord. Chem. Rev. v.48 L.G. Vanquickenborne;A. Ceulemans
  39. Research Rev. Kyungpook Univ. v.38 J.J. Chung;J.U. Hwang;J.H. Choi
  40. Mol. Phys. v.9 C.E. Schaffer;C.K. Jorgensen
  41. Mat. Fys. Medd. Dan. Vid. Selsk. v.34 no.13 C.E. Schaffer;C.K. Jorgensen
  42. Struct. Bonding v.5 C.E. Schaffer
  43. Pure Appl. Chem. v.24 C. E. Schaffer
  44. Modern Aspects of Ligand Ligand Field Theory C.K. Jorgensen
  45. Ligand Field Parameters M. Gerloch;R.C. Slade
  46. Struct, Bonding v.14 C.E. Schaffer
  47. Adv. Inorg. Chem. Radiochem. v.21 J.K. Burdett
  48. Molecular Shapes J.K. Burdett
  49. Aust. J. Chem. v.33 P.J. Steenkamp;J.W. Gonsalves
  50. Prog. Inorg. Chem. v.31 M. Gerloch;R.G. Woolley
  51. Can. J. Chem. v.49 M. Keeton;B. Fa-Chun Chou; A.B.P. Lever
  52. Can. J. Chem. v.51 M. Keeton;B. Fa-Chun Chou; A.B.P. Lever
  53. Aust. J. Chem. v.23 W.W. Fee;J.N. Mac B. Harrowfield
  54. Inorg. Chem. v.19 J. Glerup;O. Monsted;C.E. Schaffer
  55. Theory of Transition Metal Ions J.S. Griffith
  56. Research Rev. Kyungpook Univ. v.39 J.J. Chung;J.U. Hwang;J.H. Choi
  57. J. Korean Chem. Soc. v.29 J.J. Chung;J.H. Choi
  58. Orbital Interactions in Chemistry T.A. Albright;J.K. Burdett;M.H. Whangbo
  59. Inorg. Chem. v.15 J. Glerup;O. Monsted;C.E. Schaffer