DOI QR코드

DOI QR Code

Intrinsic and Thermodynamic Effects on the Structure and Energy of the S$_N$2 Transition State$^*$

  • Published : 1986.12.20

Abstract

Two contributions to the activation barrier of the $S_N2$ reaction, intrinsic and thermodynamic, are discussed in connection with the predictive power of various rate-equilibrium relationships. It has been shown that the PES models can only give correct predictions of changes in structure and energy of the transition state if the activation barrier is dictated by the thermodynamic factor. We concluded that the identity and dissociative $S_N2$ reactions are dominated by the intrinsic component while associative $S_N2$ reactions are predominantly of thermodynamic controlled. Thus in the former cases, the PES models fail, whereas in the latter cases predictions based on the intrinsic factor, the quantum mechanical models, fail. Finally in a general case of equal contributions by thermodynamic and intrinsic factors, the $SN_2$ reaction proceeds by a synchronous process with zero net charge on the reaction center, for which predictions of substituent effects will be the same as for the intrinsic control case.

Keywords

References

  1. Adv. Phys. Org. Chem. v.16 W.J. Albery;M.M. Kreevoy
  2. Acc. Chem. Res. v.8 A.J. Kresge
  3. Adv. Phys. Org. Chem. v.14 A. Pross
  4. Tetrahedron v.31 D.J. McLennan
  5. J. Chem. v.63 D.J. McLennan
  6. Chem. Rev. v.85 W.P. Jencks
  7. The MO Theory of Organic Chemistry M.J.S. Dewar
  8. J. Am. Chem. Soc. v.77 G.S. Hammond
  9. J. Am. Chem. Soc. v.89 E.R. Thornton
  10. J. Chem. Soc. B R.A. More O'Ferrall
  11. J. Am. Chem. Soc. v.92 J.C. Harris;J.L. Kurz
  12. J. Am. Chem. Soc. v.99 D.A. Jencks;W.P. Jencks
  13. J. Am. Chem. Soc. v.102 M.J. Pellerite;J.I. Brauman
  14. J. Am. Chem. Soc. v.99 W.N. Olmstead;J.I. Brauman
  15. J. Am. Chem. Soc. v.105 M.J. Pellerite;J.I. Brauman
  16. J. Phys. Chem. v.90 C-C. Han;J.A. Dodd;J.I. Brauman
  17. Ann. Rev. Phys. Chem. v.15 R.A. Marcus
  18. J. Am. Chem. Soc. v.94 J.R. Murdoch
  19. J. Chem. Ed. v.53 D.J. McLennan
  20. J. Am. Chem. Soc. v.107 E. G. runwald
  21. Z. Phys. Chem. v.108 J.N. Bronsted;K. Pedersen
  22. Tetrahedron v.39 I. Lee;I.S. Koo
  23. I. Lee;C.S. Shim;S.Y. Chung
  24. Bull. Chem. Soc. Japan v.42 K. Fukui;H. Fujimoto
  25. Bull Korean Chem. Soc. v.7 I. Lee;S.C. Sohn
  26. J. Chem. Soc. Chem. Commun. I. Lee;S.C. Sohn
  27. J. Am. Chem. Soc. v.103 S. Wolfe;D.J. Mitchell;H.B. Schlegel
  28. Can. J. Chem. v.63 D.J. Mitchell;H.B. Schlegel;S.S. Shaik;S. Wolfe
  29. J. Chem. Soc. Faraday 2 v.82 A.J.C. Varandas;S. J. Formosinho
  30. J. Am. Chem. Soc. v.106 E.S. Lewis;D.D. Hu
  31. Tetrahedron v.41 I. Lee;W.H. Lee;S.C. Shon;C.S. Kim
  32. J. Chem. Soc. Perkin 2 I. Lee;S.C. Sohn;C.H. Gang;Y.J. Oh
  33. Tetrahedron v.42 I. Lee;S.C. Shon;Y.j. Oh;B.C. Lee
  34. J. Am. Chem. Soc. v.103 A. Pross;S.S. Shaik
  35. J. Am. Chem. Soc. v.104 S.S. Shaik;A. Pross
  36. J. Am. Chem. Soc. v.104 A. Pross;S.S. Shaik
  37. J. Am. Chem. Soc. v.105 S.S. Shaik

Cited by

  1. Cross interaction constants as a measure of the transition state structure (part III). Mechanism of reactions between 1-phenylethyl benzenesulfonates with N,N-dimethylanilines vol.2, pp.1, 1986, https://doi.org/10.1002/poc.610020105
  2. Cross interaction constants as a measure of the transition state structure. 13. Steric effects of theN,N-dimethyl group on the transition state structure in aminolysis of alkyl benzenesulphonates vol.3, pp.11, 1986, https://doi.org/10.1002/poc.610031109